Int. J. Solds Structures. 1970, Vol. 6, pp. 209 to 244. Pergamon Press. Printed in Great Britain

NON-ISOTHERMAL THEORY OF RODS, PLATES AND SHELLS

A. E. GREEN

University of Oxford
and

P. M. NAGHDI

University of California, Berkeley

Abstract—A detailed development of nonlinear thermodynamical theories of rods and shells is discussed using
the three dimensional theory of classical continuum mechanics as a starting point. A portion of the paper supple-
ments and amplifies the previous work on the subject by Green, Laws and Naghdi[1]. Also, the method of approx-
imation used in [1] is altered since it has been found to be only partly satisfactory. Special attention is given to
non-isothermal linear theories of elastic shells and straight elastic rods which are derived from the three
dimensional equations.

1. INTRODUCTION

THis paper is concerned with further developments of nonlinear (as well as linear) theories
of rods and shells which, in particular, supplements and amplifies the previous work on the
subject by Green, Laws and Naghdi [1], referred to subsequently as I. Our starting point is
again the three dimensional theory of classical continuum mechanics. The three dimensional
theory is reduced to a two dimensional theory for a thermoelastic shell, or plate, and a one
dimensional theory for a thermoeclastic rod by using suitable representations for the
displacement and the temperature. Before describing the scope of the paper, however, it is
desirable to recall briefly certain closely related, but independent, recent developments in the
theories of deformable surfaces and deformable curves to which frequent reference will be
made throughout the paper.

Consider a two dimensional surface to every point of which one director (i.e. a vector
which remains invariant in length under superposed rigid body motions) is assigned. A
general thermodynamical theory of such a surface—called a Cosserat surface—has been
developed by Green, Naghdi and Wainwright [2], within the framework of two dimensional
generalized continua. A related contribution, limited to isothermal deformation of elastic
directed surfaces, has been given by Cohen and DeSilva [3]. Similarly, consider a one
dimensional curve to every point of which two directors are assigned. A general thermo-
dynamical theory of such a deformable curve (or a Cosserat rod) has been developed by
Green and Laws [4], within the framework of one dimensional generalized continua. A
related contribution restricted to isothermal deformation of elastic rods has been given by
Cohen [5].

Further aspects of the Cosserat surface have been discussed by Green and Naghdi (e.g.
[6-9]) who, in particular, have emphasized [7, 9] the relevance and applicability of the linear
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theory of an elastic Cosserat surface to problems of plates and shells, regarded as three
dimensional bodies. Similarly, the relevance of a linearized version of the theory of Green
and Laws [{4] to straight elastic rods, regarded as three dimensional bodies, has been
discussed by Green, Laws and Naghdi [10].

In the present paper, we continue the previous developments in I in an effort to illumin-
ate further our understanding of the existing theories of rods and shells, especially with
regard to thermal effects and heat conduction equations. The basic three dimensional
equations of classical continuum mechanics are collected in Section 2 and the remainder of
the paper is so arranged that the part which deals with shells (Sections 3-9) may be read
independently of the part on rods (Sections 10-14). For both shells and rods, we employ in
our developments an exact representation for the expansion of the displacement and a
similar exact representation for the expansion of temperature, Previously in I, an approxi-
mation for the temperature was used.

The two dimensional equations, including the energy equation, for shells in Sections 34
are obtained systematically from the corresponding three dimensional equations of Section
2 and appropriate entropy inequalities are deduced in Section S from the entropy inequality
usually employed in classical continuum mechanics. Some aspects of the thermodynamic
developments of Sections 3—5 were anticipated earlier in a paper by Naghdi [11]. Results for
thermoelastic shells, including the constitutive equations, are stated in section 6 and provide
an infinite set of equations for an infinite number of unknowns. Next, by approximation, we
reduce in Section 7 the infinite set of equations to a system which is formally equivalent to
that in [2] for an elastic Cosserat surface, except for more generality here in the temperature.
The method of approximation is different from that used in I since it has been found that the
procedure given in I is only partly satisfactory. In the next two sections (Sections 8-9) we
discuss linear theories of thermoelastic shells and plates and include a detailed development
of the residual energy equations for the determination of temperature. The latter, upon the
neglect of thermo-mechanical coupling, are of the same form as the heat conduction equa-
tions derived by Bolotin [12].

For rods in Sections 10-11, by a procedure similar to that used for shells, we obtain the
basic equations which include a one dimensional form for the energy equations. Entropy
inequalities for rods can be discussed along lines similar to those in Section 5 for shells;
however, this is not included in the present paper. Results for thermoelastic rods, including
the constitutive equations, are stated in Section 12 and again consist of an infinite set of
equations for an infinite number of unknowns. In Section 13, by approximation, we reduce
the infinite set of equations to a finite set formally equivalent to that in [4] for an elastic rod,
except for more generality here in the temperature. The method of approximation is different
from that used in I since it has been found that the procedure given in I is only partly satis-
factory. Finally, in Section 14, we discuss a non-isothermal linear theory of straight elastic
rods in detail and include the derivation of appropriate heat conduction equations.

2. NOTATION AND FORMULAE

Points of a three dimensional continuum are defined by a general convected coordinate
system §’. Covariant and contravariant base vectors at points of the continuum at time t are
denoted by g;, g’ with corresponding metric tensors g;;, g/, Latin indices having values 1,2,3.
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Thus
gi=gg, g=g¢g¢ gg=3 21
g = glf =¥, 0% 0% 1)
i 86,5 2 » LS4

where r* is the position vector of a typical particle 0° and &} is the Kronecker delta. The
velocity vector v* at time ¢ is given by
*
. Dr

=¥
V=g = (2.2}

where D/Dt or a superposed dot denotes the material time derivative (holding &' fixed).
The energy equation for an arbitrary material volume V bounded by a surface 4 at time ¢
is
D

D (U*+34v* y¥)p* dV = f (r*+£* . v¥)p* dV + f (t-v*—h*)dA (2.3)
iy v 4

where p* is density, U* is internal energy per unit mass, f* is the body force per unit mass, r*
is the heat supply function per unit mass per unit time, t is the stress vector and A* the heat
flux across A.

With the help of invariance conditions under superposed rigid body motions we can
deduce from (2.3) equations of mass conservation, momentum and moment of momentum.
Alternatively these equations may be regarded as separate postulates. For our present
purpose these equations may be written in the point form

p*guz — k(el’gz, 93) g = det gij» (24)
T, +p*fegt = pri*gt, (2.5)
gixT; =0, (2.6)

where a comma denotes partial differentiation with respect to ', k is independent of £, and
the stress vector t across a surface whose unit normal is u is given by

u;T;

t = _g?, = uig = u"gi. (27}

Also
T = gi”rijgj, (2.8)

where 1% is the symmetric contravariant stress tensor.
With the help of (2.4)-(2.8) the energy equation can be reduced to the point form

pFr*—p*U* + 17— g**, = 0, 2.9
where

h* = ug**, Yii = 38ijs (2.10)



212 AL E. Green and P. M. Naguni

and a vertical line denotes covariant differentiation using Christoffel symbols defined
from the metric tensor g;;. For later use, (2.9) may be written in the alternative form

prrt—prpx ol WS g (.10
g 2 g X
To complete our system of equations we need the entropy production inequality
D h
. xS e | gy — 212
DtLpS d T d + L d4 >0, (2.12)

where §* is entropy per unit mass and T*(>0) is the absolute temperature. In point form
212y is

T# q* gi
ETHS* — p*r¥ > 0. 213
Finally we observe that when given surface forces P are applied at the boundary surface
of the body, measured per unit area of the body at time ¢, then

t="P (2.14)
at the boundary.

We require generalized forms of the energy equation and entropy production inequality
and these can be obtained from (2.1 1}and (2.13). Let ¢ be a scalar function of the coordinates
. For example, one form of ¢ to be used later in shell theory is (8°). We multiply {2.11)
by ¢ and integrate throughout an arbitrary volume V. After some straightforward manipula-
tion we obtain

{}f U*+Ev* VEEp*pdV = f (¥4 vFp*e dl + j {t-v¥ I d4
Dt ¥ 2 ¥ E)
(2.15}
X1 4
f [T, v*—g* %],55‘ ;; =
Again, let ¢ be a scalar function of the coordinates & which is such that
¥ =0 (2.16)

throughout some closed region V. We multiply (2.13) by ¢ and integrate throughout V
to get

D .. ey }—;m;f f g%
- — V 2.17
thva!fidV | Ctavs [ [ Tav=0 @

3. SHELLS
We adopt the convention that Greek indices take the values 1, 2 and write

0 = (3.1}

Fes
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The parametric equation & = 0 defines a surface s in space at time £, which we assume to
be smooth and non-intersecting, the position vector of any point of , being given by

r=r{0'.0% 1) = 56", 6% 0.1). (3.2)
We assume that the continuum is bounded by the surfaces

{=a <=f@<0<p (3-3)

which are non-intersecting with themselves, each other, or with ;, and which are such that
5 lies entirely between them. We fix the relation of the surface s to the bounding surface
{3.3) by imposing the condition

8 8
f p*giide = j KO, 62, 5)EdE = 0. (34

The above condition is independent of time, so that once sis determined by such an equation
(in, say, a reference state) it remains so determined. We also assume that the continuum
is bounded by a surface

f10'.6%) =0 (3.5)

which is such that & = constant are closed smooth curves on this surface. We call such a
continuum a shell.

We assume that the position vector and temperature of any point of the shell at time ¢
can be represented by the expressions

* = (0", 6%, 1)+ Z Ny, (3.6)
N=1

T* = T 00+ T &, (3.7)

where dy are vector functions and Ty are scalar functions of 81, 02, t. We also assume that
the series (3.6) and (3.7) may be differentiated as many times as required with respect to
any of its variables at least in the open region a < ¢ < §.

From {2.2) and {3.6) we have

V= vt NZI Mwy, (3.8)
where

Y=1  wy=dy. (3.9)
For later convenience we put

d=d,, w=w,. (3.10)

Wecall the vectors dy directors and wy director velocities and observe that dy are unchanged
in length when the shell is subjected to superposed rigid body motions. From (2.1) and
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(3.6) we see that

X ad
x = A+ EN.- N-
g =2 \,Zl S
N (3.10
g = ) N&ldy a :FL
N=1 e
We find it convenient to use the notation
Qag = Ay Ag. a=detalg§
) (3.12)

a* = aaﬁaﬁq aa’law = 5?;,

and we denote the unit normal vector to the surface (3.2) by a5, a vector function of 61, 62, ¢.
In three dimensional theory of continuum mechanics it is usual to assume that

(8182831 > 0 (3.13)

for all time and all values of #. In particular, it is valid for £ = 0 so that, from (3.11) and

(3.10),
[a,a,d] > 0. (3.14)

With the help of (3.8), the energy equation (2.3) was reduced to two dimensional form in
a previous papert I. We quote the final result and refer readers to I for further details. Thus

1 = | B ,
D p(U+*v-v+ Y K'wyoves Y kM""’wM-wN) do
Dt 2 N=2 2M‘N=1
N . (3.15)
:fp(r«i-F-v +Y LN-WN) dO’+§(N'V+ Y MN-wN——h) de.
N=1 N=1

The surface integral in (3.15) is over an arbitrary element of the surface 5 bounded by
some closed curve ¢ and the line integrals are around ¢. Also

I B
pat = f p*gt dé = J. kdé,
“ﬁ * (3.16)
pkNat = f &kde (N =22),

&

8
pra* = f r*k d& — [h*(gg>*)*le=a— [M*(gg>*M*]e=ps (3.17)

a

B il
pFat = [ Pde+ g™ e g™ Tens = [ eraerm o

B
pLVa* = f kY dE + [tEN(gg® ) -+ (6" (22 ) )=
: (3.19)

- f Pk de + [T

B
pUat = f U*kdé, (3.20)

+ As already noted in section 1, throughout the present paper, I refers to Ref. [1].
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where
W87 & 018 = (6, B. ) — (6%, o, 1). (321
In addition, if v is the outward unit normal to a curve ¢ on the surface ; and
v = v,a% (3.22)
then
N = N%y,, MY = MMy, h = ¢*v,, (3.23)
where
5
Nea? = f T, dé&, (3.24)
8
MNzai‘ - f (;:Nrr‘z dé:, M()ar — N;I’ (325)
8
ga* = f q*°g* d¢. (3.26)
We now substitute
p=¢& @m=12..) (327

in (2.15) and follow a procedure similar to that used in obtaining (3.15) from (2.3). Thus
D

1 & | S
— p[{l’”+—k"v=v+ Y oMtrtwy v Y kM+N+"WM~WN]dO’

- p[’"*R”+L"~v+ )
2

=]

LY wy—m". v~ NZ ﬁ%mNH‘W}v} do (3.28)
=1

+ § [M"'H« Y MN+"-WN—h"] de,
N=1

where, in addition to quantities already defined, we have

prrat = [ PR e (N0 e 8V . (3.29)
pUa? — f " Umkende, (3.30)
m¥a = fo ANIT dE (N > 0), (3.31)
pR"at = n f ’ g3 gt dg, (3.32)

B
quai‘ — f q*afng% d(f’ W= qmva. (333)
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4. FURTHER DEVELOPMENT OF ENERGY EQUATIONS

Equation (3.15) may be regarded as a special case of (3.28) when n = 0. In point form,
equation (3.28) becomes

pr"+pR*— pU" +(M™, + pL" —m") - v + M™ - v,
o 4.1)
— n x ;
+ Z [MN+n1la+pLN+n_ _____ mN+n 'wN+ Z Mh+na'wN‘a_qna|1:0.
N=1 n N=1
where a comma denotes partial differentiation with respect to #* and a vertical line now

denotes surface covariant differentiation using Christoffel symbols derived from the
surface metric tensor a,,. Also.

LY = LY —k%— Y kMY, (N >2), (4.2)

We consider a motion of the shell at time ¢ in which the velocities differ from the given
velocities only by superposed uniform translational rigid body velocities and we assume
that these do not change the quantities ", R", U, M™, m", L", ¢"* for n > 0. From (4.1),
we then deduce the results

N 4+pF =0, M™,+pL"—m"=0 (n=12..). (4.3)
With the help of (4.3), equation (4.1) reduces to
. bs N X
pr"+pR"—pU"+M"°‘-V,+ ____‘mN+n_wN+ Z MN+M'WN,1—qm[a:0
' NZiN+n N=1

n=012..0 (4.4)

Next we consider a motion of the shell in which the velocities differ from the given velocities
only by a superposed uniform rigid body angular velocity, the shell having the same
orientation as before. Then, assuming that ", R", U", M™, m", L", g™ are unaltered by
such rigid body motions we deduce. from (4.4), the equation

> { N
M™ xa,+ VT xdy + MY T xdy .| =0 forn=0.1..... 4.5)
x4 N§1 N+n N N (
The case n = 0 can more conveniently be written as
Nexa,+ Y (m"xdy+M"xdy,) =0 (4.6)
N=1

which was obtained previously in I but in component form.

It is of interest to observe that the equations of motion (4.3) can also be obtained
directly from (2.5) and (3.8); and the equations (4.5) and (4.6) can be deduced from (2.6}
and (3.11).
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With the help of (4.5) the system of energy equations (4.4) can be simplified. For this
purpose, we introduce the following quantities:

dN = dN,-ai = deal'. 8dN/091 = },Nhai,

S 4 4.7

d, = d = da' = da,,  6d/o0" =

Angz = Aygla—bpadns Ansa = dnz ot bng[iv
’J-N-‘; = ‘:Zpy;"Nva’ ’?'N-az = )*N.hsa (48)

Alﬁa = Agx = dﬂ)a"bﬂadiiw ’11335 = )"39: = d3,a+b£dﬂﬂ
/1-81 = a‘w;‘yas ;{'331 = }‘30:*
N* = N, m"=m"a, m'=m=nma,

4.9)

MNa — MNia(al_’ Mla — Mm — M"“a,-.

Then, using (4.5), equations (4.4) reduce to

. £ N . ks )
pr"+pR”—pU"+M’"”°’lyz,;+ Z _N+nmN+mdNi+ Z MN+ma2NM__qu‘a — 0, (4]0)
N=1 N=1

where
f]ag = éa:ﬁw 29,43 = agﬂ*Amg, (411)

A,z being the initial value of a,; and

a

N
Mmﬂa = Mmuﬁ — Mnﬂa____ Z mmN+nadNL‘i+ MN+nay/%N& . (412)
N=1

The first part of equation (4.12) arises from the component form of {(4.5), the remaining
components giving
3a - N N+n3 Nan 3 o N+n3 N+ 3
M3 Y ¥ e mN e A 1 Y (MY A — MY T3 = 0. (413)
N=t N+n N=1

Equations {4.12), (4.13) hold for n=0,1,2,... but it is more convenient to write the
equations corresponding to n = 0 in the forms

o

N'Bx — Nob . NBx_ Z (MNuyAN§y+mNadA’p)' (4.14)
N=1

N34 Y mV3dy—mVd+ Y (MY — MY3) = 0., (4.15)
N=1 N=1

At this point we introduce the three dimensional Helmholtz free energy function A*
by the equation

A* = U% — T*S*, (4.16)
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Then writing

8
pS"at = f S*kEm dE,

]
p ATt = f A*kEm de,
we have, from (3.7) and (4.16),
A" = Ut — Z SN+"TN.
N=0
Equation (4.10) now becomes

p”+pR"—p[A"+ ) GN“WL+S””TM]~q”W+Af“%w
N=0

+ 2 ( mN+md +MN+malin‘) = ()

5. ENTROPY INEQUALITIES
We first recall that iy > 0 in the entropy inequality (2.17) and set
Yy=(—atd)" (x<E<P).

In addition, remembering that T* > 0, we put

so that, in view of (3.7),

T0®0 = 1, Z TN®r‘N = O (r == ‘,2,)
N=0

(4.17)

(4.18)

(4.19)

(4.20)

(5.3)

If we substitute (5.1) and (5.2) into (2.17) and reduce the resulting equation to point form

we obtain the inequality

© n In w
p Z ( )( (X" r|jS' Z r’+N®N:|+ Z ( )(_a)n~r z (qr+Na‘a®N+qr+Na®N.a)
N=0 r=0 \I N=0

nolin—1
_ n—r—1 Rr+N+1® >0
pZ( ) @) Z0r+N-{—1

In view of (5.3),

S'r_ Z @N[Ar+N+ Z SM+N+rTM]
N=0 M=0

:Sr__ Z QN[Ar+N+ Z SM+N+rTM:|_. Z z S"+r®n—NTN
M=0

N=0 n=0 N=0

i

M=0

_ Z @N[Ar+N+ Z SM+N+rTM‘J.
N=0

(5.4)

(8.5)
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Substituting for #* from (4.20) into (5.4) and using (5.5), we finally obtain the inequalities

n n © . 0 .
Z ( )(_o()n—r{ Z QN[—P(A’+N+ Z SM+N+rTM) +Mrr+NBarlaﬂ
r=0 \F N=0 M=0

< M M+N+ri j - M+ N+ j' N N+
ri i ria . RN*r 5.6
+MZ=:1 M+N+rm dM1+MZ::1M Mm+N+rp ( )

+ ) qN+”‘®NY‘,}‘ >0 forn=0,1,2,....
N=0

6. THERMOELASTIC SHELL

Two methods are available for finding constitutive relations appropriate for an elastic
shell. In the first method we start with the three dimensional thermoelastic equations

oA*
* = 6.1
N AT (6.1)
0A* 0A*
rs __ 1% 6.2
! P (a}’,s * aysr) ( )

wheret A* is a function of T* and strain y,, given by

Ves = %(gr 8 Gr ) Gs)7 (63)

G, being the value of g, in some preferred initial state. From (3.7), (3.11), (3.16) and (4.18)
we see that 4" can be expressed in the form

A" = AYTy, e, dpgis Aptia)- (6.4)

Also A" depends on initial values of dy;, Ay, and Ty. In (6.4), Non=0,1,2,... and
M = 1,2,.... With the help of (3.11), (3.24), (3.25), (3.31), (4.9). (4.12), (4.13), (4.16), (4.19),
(6.1) and (6.2), a direct calculation yields

cA"
SntM o = =
T, n=012...;M=012,..), (6.5)
0A" 04"
M =] = col)s .
IP( Gy aeﬂ,) (r=20,1,..) (6.6)
N N+ni __ 6A” .
mm —padNi (m=0.1,...; N=1.2..), (6.7)
N + nia (’}A"
M =p5}—~ n=01...;N=12..). (6.8)
“Nia
In addition
—g**T* > 0, (6.9)

t The free energy A* also depends on the initial metric tensor G,,.
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and the residual energy equation is
perr L gg) PrS*T* = 0, (6.10)
From (6.10) we can, by integration and use of (3.7), obtain the residual energy equations

fp(r"+R")d6— JP Z §**MTy do —~ §h"dc =0,
M=0
or

p(r"+RY—p Y S""MT, —q™, = 0. (6.11)
M=0
Using (3.7), by integration of (6.9) we obtain the inequalities

n oo N
-y ( )( " [ PR T T, }20 (r=0.1..). (6.12)

By noting that (6.9) is equivalent to
q*kGﬁc > 0’

instead of (6.12), we can deduce the equivalent inequalities

Y (n)(—oc)"_’ Y [—N«pR”N@N«{-qHN“@N‘a] >0 (n=0,1,..). (6.13)
r=0 \F N=o | r+N

Alternatively, we may start with the inequality (5.6) and suitable constitutive assump-
tions and again deduce all the results (6.5}(6.13) but we omit details.

In addition to equations of the present section, we have equations of motion (4.3), and
equations (4.14) and (4.15) which give values for N*¥ and N3, Also we have the system of
equations (4.12) and (4.13) for values of n = 1,2 .. .. Equations (4.12)-(4.15) essentially arise
from the symmetry of the three dimensional stress tensor ; and in view of (6.6)(6.8) and the
fact that 4" in (6.4) is evaluated from (4.18) with the help of (3.11), the set of equations (4.12)
and (4.13) is satisfied identically. As a result there is some redundancy in the equations we
have obtained for a thermoelastic sheil and we summarize the essential equations below.
The equations of motion (4.3) in component form are

Nﬂala__ng3a+ pFﬂ =0,

3 . (6.14)
N3, + by NP+ pF? = 0,
M, —bEMP* +p[F = mP, 6.15)
M3+ by MP*+ pL3 = m?, .
| B
M, — M4 pLY = m™,
(n>2) (6.16)

M™%+ by M+ pL™ = m™.

N3 ¥ (mM P dg—mMdd)+ Y (MY, - MYA3) = 0,
N=1 ) N=t (6.17)
N'Bx — N7ab — Nba_ Z (M350 4 m™ dyf)
N=1
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Writing A for 4° the constitutive equations are

oA
N= e — N=201,..) 6.18
N T ( ) (6.18)
and
1 {dA4 0A
N Bl
NT=2p (aeaﬂ 6e,,a)’
, A
M= p—r N=12..), 6.19
m =P { ) (6.19)
A A
Nia — N=12..)
M P S ( 02,..0)
A= ATy, e dnisdn)  (M=0,1,...;N=12,..) (6.20)
The residual energy equations are
p(r"+RY— Y "V y—gm, =0  (n=01,..) (6.21)
N=0

and the entropy inequalities are

n n 0 N
_ ) RH‘NT+ +N“TG >0 r=0,1,..) (622)
,go(r)( ey Lwﬂ VT, ( )
To complete the theory, constitutive equations are also required for R" and ¢™* but we only
consider these for linear elastic isotropic plates in Section 8.

7. APPROXIMATION FOR SHELLS

In I where temperature effects were only partly taken into account, a method of approxi-
mation was suggested in order to reduce the infinite set of equations for kinematic quantities
to finite form. In a recent detailed examination of the linear theory of isotropic plates we
have found that the approximation procedure is only partly satisfactory and hence a
different procedure is discussed here.t At this stage we make no approximation about the
temperature.

We assume that the free energy function A in (6.20) can be represented by an approxi-
mate expression in terms of e,4, d;, 4;,, TV(N = 0.1,...) only. We do not solve the problem
of how to determine this approximate form of 4 from (6.20) which was obtained from the
full three dimensional expression for the free energy. Thus, we set

A = Alesps Aia» iy Ty) (N=0,1,..) (7.1)

approximately, where A(e,, Air. d;i, Ty) is a different function from that in (6.20). Using
(6.19), ;. it follows thatl

mV = 0, MY =0 (N > 2). (7.2
+ A comparison of shell theory and classical three dimensional isothermal elasticity has been discussed
recently by Sensenig [13] from another point of view.
t These results hold approximately, since they are obtained with the help of (7.1).
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The equations of motion (6.16) are then satisfied if
=0 (N=z2 (1.3)
and the remaining equations of motion (6.14), (6.15) and (6.17) become
NP2 —bEN3* 4 pFF = 0,

_ (7.4)
N3a|1+bmﬂNﬂa+pF” =0,
M*,— bE M3 4 p[F = P,
3a 2 73 3 (7.3)
M h‘*‘ba[;Mﬂ +,0L‘ = m,
N3 +md* —m*d® + MP72%, — M35 = 0,
7.
N'Bx — Nb Nﬂl‘_MaY)ﬁ;,-Fmadﬁ. ( 6)
where
FP = Fé 5. af, FP=F—v.a,,
. _ 7.7
[P = L —kw. o, L® = L3—k*-a,, v
approximately.
Constitutive equations are now given by
n_ o4
ATy
, 0
N'bx . 1'0 ,a_A, +f,4. s
2 5(’,4) @em
o {7.8)
M= =
Yot
i A
Pad;

and constitutive relations are still required for ¢** and R" before the residual energy equa-
tions

PPHR)—p Y SHNT—g, =0 (n=0,1...) (7.9)
N=0

are completely specified. Such constitutive equations are subject to restrictions imposed by
the inequalities (6.22).

We recall that equations (4.12) and (4.13) for n > 1 are identities in a complete theory
for elastic shells. Since the expression (7.1) for the free energy A is no longer exact, we expect
that some of these equations may not be satisfied by the approximation used in obtaining
(7.1)+7.9). In fact, in view of (7.2), only equations corresponding ton = 1in(4.12)and (4.13)
are violated and these equations reduce to

Mﬂa — th — MaB’ M3 MBaz = Q. (7.10)

However, in the case of linear plate theory it is found that the first result holds and only
(7.10), is not satisfied. The set of equations (7.4)(7.8) is formally the same as those derived
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by Green, Naghdi and Wainwright [2] from separate postulates, apart from the extra
generality here in the temperature terms.

8. LINEAR THEORY

Here we summarize some aspects of the linear theory of thermoelastic shells based on the
results of Section 7. Apart from the extra generality here concerning temperature, the
results are expressed in the form given recently by Green and Naghdi [9].

The curvilinear coordinate ¢ in Section 3 is chosen so that initially, in (3.6),

d=d, =A;, dy=0 (N3>2), (8.1)

where Aj; is the unit normal to the initial middle surface £ = 0 of the shell. The initial values
ofa;. a' a,. b, ....d; Ay are denoted by

Ai A Ay, Bog.. ... Di A, (8.2)

We assume that initially the shell is in equilibrium under zero stresses and at uniform
temperature 6, and we suppose that T* in (3.7) denotes temperature difference from 0,.
Also

D,=0, Dy=1, Ayz=—By Ay =0 (8.3)

If wis the displacement vector for points on the middle surface of the shell, we set

u=uA = uA;, d=A,+8% 8 =0%A, =0l d, =05, dy=1+0,, (84)

so that
0, = 0f +u;3,+Blu., 43 = 6%. (8.5)
Also
Aap—Nap = pop— B0, Azg— N3, = p3,+BJd,, (8.6)
where
~Pap = Uapap T Blpgut, + Bluyg+ Bl — B, Bjus — 3yp,  p3g = 034 (87)

The equations of motion (7.4)7.6) reduce tot

Nﬂa|a—-BgV“+PFﬂ = O, Va|a+BaﬂNﬁa+pF3 = O’ (88)
Alﬂala-%piﬁ = V5, M3“|m+pi3 = V3, (8.9)
N = N'P* — NPz BBpfea, (8.10)

+ See Green and Naghdi [9]. The notation of the present paper differs from that used by Green and Naghdi
[8,9] in the ordering of some indices.
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where p is density of the initial shelland F¥, F?, L, L* are components referred to the initial
base vectors A;. The constitutive relations (7.8) reduce to

v 4
a TN ’
N rap _l‘ D 40_11.1__. Eﬁ‘“
2" \Ceyy ey,
(8.11)
M = CA
‘ a (—}pfx )
Vi CA
~ e
where SV denotes entropy difference from initial values and
A = Aley. pig. 0i. Ty), (8.12)
dependence on A4,, and B,; being understood. The energy equations (7.9) reduce to
plr"+ R — ptoS" — g™, = 0. (8.13)

9. LINEAR THEORY FOR PLATES

We now consider the results of Section 8 in more detail for the linear theory of plates of
uniform thickness h,. The function (8.12) for a plate which is initially unstressed and at
uniform temperature #, is quadratic in the variables 4. p;,. 6;, Tyy. Green and Naghdi [7]
have given an explicit expression for an isotropic Cosserat plate when Ty = O(N > 1).
These authors [7] also considered the further restriction such that the strain energy A
imitates the symmetry properties of a three-dimensional plate which is transversely isotropic
with respect to normals to the plate. In the present context, this latter restriction imposes the
condition that A is invariant under the transformations

Uy — Uy Uy = —H3, Oy = — Oy, 33 — 3,
Cap ™ Cap» fap = — Pap- P32 7> Pz 9.1
Ton — Tan. Tonvs — —Tiness

where, for a plate,
Pap = ”u31aﬁ+dulﬁ' (9‘2)

Thus
2pA = [a; A A7 4 ay(AY AP+ A% AP pe,; + 03 AE,05 4 0,03
+ 05 AP AT 4 o AT AP+ 0, AP APT)popp s+ g A% paapap + 200 A% 50 5

o r X
+23; Z BanTon+2A4% e, Z BonTan+2A4%pop > Panve1Tons
N=o N=0 NTO

X ¥
+ Y vamanTemTon+ ) TamesonetTams i Taner (9.3)
MN=

MN=0 0
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From (8.11) we then obtain expressions for stresses and entropy. Inspection of these
expressions and of equations (8.8) and (8.9) shows that the basic equations for stretching
and bending of the plate separate into two groups. The first group concerned with stretching
are

N = N = [0 A AP + (AT AP+ A% AP e s+t A5+ A Y Fon Ty,
N=0

M3 = o:gA“ﬂpsﬁ, V3= d453+05914w861]+ Z B?_NTZNa Nﬁah‘f‘pFﬁ =0,
N=0

_ 9.4)
M3d'1+pL3 — V3,
—pSN = Bynds+BovA% e+ Y vomanToms
M=0
p(r2n+R2u)_p60§2n’_q2m[g =0
The equations for bending of the plate are
M = [as AP A7 + a5 A7 AP + 0‘7Au6Aay]Pyé +A% Z Bav+1Tonsrs
N=0
Ve = C{3Aaﬁ(§g, Mﬁ‘zi,‘l’“ Qz:ﬁ = Vﬁ, Vz‘a"{“ﬂﬁs = O, (‘9 5)

x
—pSNHE = ﬁ2N+lAaﬂpali+ Z Yam+1.28+1 Daprs oo
M=0

p(r2n+1 +R2n+1)___pgogln+l __q2n+ la]a —_ 0

To complete the systems of equations (9.4) and (9.5) we require constitutive equations for R”
and ¢™ and values for r". These can be obtained by separate postulates but we derive them
here from the three-dimensional form for the heat conduction vector using (3.29), (3.32) and
(3.33) and appropriate conditions at the surfaces ¢ = +3h, of the plate, where hy is a
constant. We assume that the temperature of the medium on either side of the plate is given
by

T (& > thy), T_(& < —hg), (9.6)

and that at the surfaces of the plate
h* = H(T*—T,) at& = 1h,,

9.7)
B = HT*—T.) até = —3h,.
where H is a constant. For a transversely isotropic plate
q*a = MKADZ‘ET?;T, [}*3 = ——K'T.* N (98)
where
k=0, K= 0. 9.9)
1t follows from (3.29) and (3.32) that
1ho ¥
pr"+R") = pi"— H[E(T* = Ty)]yp, — H[E(T— T_)] - g4, — ' Y NTRENH2de,
- 4hg N=0

{9.10)
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where
+ho
oAl = kf , r*ENdE. 9.11)
= 4ho
Hence
(2"+R2" _ ~2n_H 5 o EQ 2n+ 2N @ 2n
ptr ) = pr NZ( 3 Lyv—|5] (T.+T.)
=0 \ ~ <
9.12)
—8nk’ i NTZJYM 2 (
N=0 2’1+2N‘“‘} 2 ’
and

2n+1 2n+1 =2n+1 - hO 2Nt 2 hO 2t
p(r= ™+ R¥MTY) = ppnt ~H[2 NZ (5) Tmn“(“z“) (T, ““TJ}
=0
(9.13)

x5 (2N+1)T:7_N+1 hO 2n+2N+1
—2(2n+ Dx’ - [ = .
@t D 2 AN+l |2
where, in (9.12) and (9.13), n = 0,1,2,.. ..
Expressions for ¢** are obtained from (3.33), (9.8) and (3.7). Thus

. 2n+2ZN+1
d Dny ho) "

2me -2 -Aaﬁ . i
? KA Y mraINTT 2

. 2n+2N+3
4 T2N+l,6 ho) "

+

(9.14)

ntle e qob I T Y
? KA L It aN 132

This completes the basic set of equations which, however, involve an infinite set of
temperature variables Ty, T, .. .. For applications it is necessary to make approximations.
Here we restrict our attention to an approximation in which we set

TZN = 0, TZN‘?‘l = 0 (N 2 1)~ (9’4]5)

From (9.12) and (9.13) we then have

plr® +R% = pf®—~H2T,~ T, —T_], (9.16)
plr' +RY = prt — H3hET, —%ho(T, — T )] —K'ho T, . 9.17)
Also, equations (9.14) reduce to
4°% = —KkhoA* Ty ;. (9.18)
.h3
g'e = _%_EeAaﬁTm_ (9.19)

The energy equations in (9.4) and (9.5) corresponding to n = 0 now become

Fl_(}’o.o To+ Bods + BoAd™ e+ khgViTy+ pi® —H2To,— T, —T-] = 0, (9.20)

¢

o
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and
kh3
90 (Y1 17 +ﬂ1Aaﬂpaﬂ)+—V2T1 +pF' —3H[RST, —ho(T, — T_)]—Kk'hoeT; = 0, (9.21)

where V? is the two dimensional Laplacian operator. If in (9.20) and (9.21) the strain
components (which represent the effect of thermo-mechanical coupling) are omitted,
we recover equations of the same form as those derived by Bolotin [12] for shells.

We close this Section with some remarks about the determination of the constants
in (9.3). By comparing some exact solutions from the three dimensional linear elasticity
with corresponding solutions.predicted by the approximate theory, we can identify most
of the elastic coefficients which occur in the approximate value of A in (9.3). In this way,
some of the coefficients a,, ..., ay were determined previously [9] as follows:

n(1—n)D _(1=n’D

Oy = g = 1-2y s (x2=%(1—11)D, Oy = 1—25 s os = B,
. (9.22)
ag = a7 = 3(1 —n)B,
where
Eh Eh}
= 02, =__0 7 {9.23)
I-n 12(1-n°)

E being Young’s modulus and n Poisson’s ratio. If we include (7.10), in the present approx-
imation, we find that ag = 0; if we disregard (7.10),, then ag is arbitraryt. The coefficient
o3 cannot be determined as a constant by comparison with a three dimensional solution,
and it seems preferable to allow a3 to have different possible values depending on the
particular context in which the approximate theory is used. In particular, consider the
problem of torsion of a rectangular strip of breadth a and thickness hy and use (9.5) to
obtain the formula for torsional rigidity, i.e.

hia 22 a
where u = E/[2(1 +7)] and
2= (9.25)
a3

It is known from a similar result in Reissner’s plate theory [14] that the formula (9.24)
gives good results for a wide range of values of a/h, if

o = 2phg. 9.26)

In view of (3.7) and the approximation (9.15), it is not difficult to make the identification
o Eho _ Eh}

Bo = Po = 1_2'7% By = _mIZ(l——r/)a’ 9.27)

where « is the coefficient of linear expansion.

T We recall that in the theory of a Cosserat plate [7), the coefficient corresponding to g is not zero.
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10. RODS

The notation in this and following sections must be regarded as separate from that
in Sections 3 to 9 so that no confusion need arise over different uses of the same symbol.
The parametric equations

8 =0 (10.1)

define a curve ¢ in space at time t. We assume that the curve ¢ is sufficiently smooth and
nonintersecting. The position vector r of any point of ¢ is given by

r=r,t)=r%0,0,6% 1) 0° = 0). {10.2)

We also assume that the region of space occupied by the continuum is some neighborhood
of ¢ which is bounded by a surface

10, 6%) = 0, (10.3)

such that # = constant are curved sections of this continuum bounded by closed curves.
We call such a continuum a rod. We fix the relation of the curve ¢ to the boundary surface
(10.3) by imposing the conditions

ffp*(g)%()“ d6! d6* = ffk(@‘, 62, 0)6* d6* do* = 0, (10.4)

the integration being over any surface § = constant bounded by (10.3). We observe that
these conditions are independent of time t so that once ¢ is determined by such equations
{in, say, a reference state) it is determined for all time.

We assume that the position vector and temperature of any point of the rod at time ¢
can be represented by the expansions

r¥ =0, 1)+ 3 0707 0V, ., (10.5)
N
T* = Tyf,0)+ ¥ 090 . 0°5T, . (10.6)
N

where d,,,....,, are vector functions and T,,,,...,, are scalar functions of 6, t, both being

completely symmetric in the indices o, ®,,...,oy. The summation in (10,5) and (10.6)

is over all values of a;,a5,...,0y = 1,2 and N = 1,2,3,... . We assume that (10.5) and

(10.6) may be differentiated as many times as required with respect to any of their variables.
From (2.2) and (10.5) we have

VE = v Y 0M0 W,y {10.7)
N
where
(10.8)

For later convenience we put
d, = a,. w, = 4a,. (10.9)

We call d,,,,...,, directors and w,,,...,. director velocities and observe that d,,,,...., are
unchanged in length when the rod is subjected to superposed rigid body motions. We also
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use the notation

or

a3=@, Q;; = a;-a;

j

where a; is a tangent vector to the curve (10.2). From (10.5) and (2.1) we see that

x
gﬂ = al} + Z N0a23a3 e gaNdﬂazay--aNs
N=2

/6.

A a2 AN

g3 =a;+ Y 6m0. . 0°vod
N=1

With the displacement function (10.5) the restriction analogous to (3.14) is

[a;a,a3] > 0.

(10.10)

(10.11)

(10.12)

For the rest of this Section we consider an arbitrary element of the rod bounded by

the surfaces 0 = a, 0 = f (f = 0 > o), and a surface (10.3).

With the help of (10.7), the energy equation (2.3) was reduced to one dimensional form
int I. We quote the final result and refer readers to the previous paper for details. Thus

@2 1 oo
— Utzv-ve+
DtJ,, p[ A

2

b2 on Ea
1 N=1 N=

=1

where a < ¢ < 0 < ¢, < ffand

[0, 0152 = (¢, = (1, 1).

= ffp*(g)% de! do? = ffkd@l de?,

pk#aN(g )t = ffkeal...ew d6'de? (N >2),

Also}

-

plazs)

priass)t = ffkr* dot do? — #h*(ul do? — 2 d0Y)g*,
pllaz;)* = f f kf* do' do? + fﬁ(Tl d6>—T, do"),
I M agy)t = f fkf*e"l ... 77 do' do* + iﬁeal ... 0°%(T, d0* —T, dOY),

pU(a33)% = J‘ka* del d02

+ As noted in section 1, I refers to Ref. [1].
T In view of (10.4), k* = 0.

r SRt 4
p* N-wal‘.AaN—hjl )

pE ;
kxvroany W an +:; Z kb ﬂdel"'ﬂN “Wgi B (a33)* dO
~“MN=1

(10.13)
2

1

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)
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In (10.15)10.18), the double integrals are over any section & = const. of the rod bounded
by the surface (10.3) and the line integrals are along the curve

0 = constant, f(01,6%) = 0. (10.19)
In addition,
h= f f h*(gg®®)! d6' d6* = f f g*3¢* do* 467, (10.20)
n= ffT;, dat de?, (10.21)
pray f f 6% 6*¥T, do* d6?. (10.22)
We now substitute
b= 0. o

in (2.15) and follow a procedure similar to that used in obtaining (10.13) from (2.3). Thus

D @2 1 ©
p U on g jo1 any gy 4 Z kar“znﬁx“'ﬁnv.wﬂlmBN
N=

Bl: (1] 2 =1
1 &2 Bryyeee
+§ Z kv anBrBar VMwBI"'ﬁN . le"'YM:l(a33)% do
MN=1

lal..‘anﬁf"ﬂN . wﬂlﬂN:l (‘133)5L (1023)

@2 00
:f {pl: r"l"'“"+R“l"'“n_},lal"'n"'V+ Z
N=

¢1 =1

o
gy z (ma1(az"'anﬂ1“'ﬂ1v)+ . +m“"(°‘l"'“"~‘ﬂ1'"ﬁm) . wﬂl..,ﬁN} de
N=1

0 o2
+[pa1"'an,v+ z pllx"'llnﬂl"'ﬁN,wﬂlmﬂN_hal'”an

N=1 [2]

where, in addition to quantities already defined, we have

@M = mm(azman) — ‘[J.Talgaz e d01 d62 (1024)
o man(az“'an)+waz(ar“an)+ +man(’11"'an~l) (10.25)
= = ij do' d6?, (10.26)

o — f f 0%t .. Ph*(gg®?)t 6" 6> = J f O . 6rng*gt 461 d62,  (1027)
pR* *(az3) = JJ (g1 0% ... 0%+ ... +g**0" ... 0% ]g* dO' dO?, (10.28)

pR“(a33)% = f J‘ q*ag-é del d02, (1029)
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pUS ()t = f f kb 6mU* d0* 46, (10.30)

pra (g )t = f f kg ... gr* 4O d6* — éﬁa«t L Ohut d0% —u? dOY)gt. (10.31)

11. FURTHER DEVELOPMENT OF ENERGY EQUATION FOR RODS

In view of (10.14),, p(aa1)? is a function of 8 and is independent of time so we set
;0(033)42L = A0). (1L.1)

Equations (10.13) and (10.23) in point form become

. [m < i apr
Ar—ZU+(—B+}I).v+n-§g+ Y ()q"""“”+ P ).w
N={

a6 06 e
5 o (11.2)
x w,. ...
+ prre. —AEN = (),
Ngl a0 a0
and
. ap*t v
2 otl"-an_*_chma,,_Ucu---az,. + ,l SR 1 ot An 3Rl
(r ) ( q e ) v+p e
v pupay OB (@2~ B B} ( By p)
g canfrfy 4“8 — BBy L gytn(aean BBy
+ Ngl (/lq + Y @ ® W, hn
i owy ... Chv
+ p‘xl"'“nﬁl"'ﬂN . BiBN =0, 11.3)
NZ‘ a6 L] (
where, in addition to notation already specified, we have
T=f-v— Y KW, 0.
v . (11.4)
qazy"azn — Iar'-a,,_kar“an",~ kk:"‘&"}'l"‘?NWylmyN.
N=1

We consider a motion of the rod at time ¢ in which the velocities differ from the given
velocities only by superposed uniform translational rigid body velocities and we assume
that these do not change the quantities r, p% "% R* ™% [, &% g p*t' % g?t %y f,
@* @@ p p* s 1t then follows from (11.2) and (11.3) that

an — 6pdl"'an
— et Af = A1 A
89+ f=0, q + 0

With the help of (11.5) equations (11.2) and (11.3) reduce to

= ¥, (11_5)

. ov x - aw, ... ch
Jr=U+n- 4 ¥ pesow, g 3 opuaw, Mavay 1.
T ot 2P Y (11.6)
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and
.
XL An AgtAn S ETR xy° A (v
Ar g RE o e g,
b
x
+ Z (mﬁx(ax“'ﬂnﬂz”'lf)v)_}_ Lt fve “Ulnﬂx"‘/fN—H),wﬁl . (11.7)
N=1
¥ 3 ALAL dAn
+ Z pm'“anﬂx"'BN.iwﬂ‘_'“ﬂ’v_g@,, — = (.

Next we consider a motion of the rod in which the velocities differ from the given
velocities only by a superposed uniform rigid body angular velocity, the rod having the
same orientation as before. Then, assuming that the same quantities mentioned above are
unalitered by such rigid body motions, from (11.6) and (11.7), we deduce the equations

£ X -~
cd,, ...
azxnt Y dy L xS ey = (), (11.8)
N=1 N=1 (‘0
and
a, Xpul"'an+aaxma(11"‘ﬂn)+ Z dlil“'/iw X(mﬂl(m‘ '1n/12"'/1N)+ L @fte b ‘ﬂN—n))
N=2
(11.9)

X 5dﬁ Y} capfyB
BN 2By BN = (),
+ sz:l 80 % p
It is of interest to note that the equations of motion (11.5) can be obtained directly from
(2.5) and (10.7); and the equations (11.8) and (11.9) can be deduced from (2.6) and (10.7).
With the help of (11.8) and (11.9), the equations (11.6) and (11.7) can be simplified.
For this purpose we need to introduce further notation. Thus, let

. , . o ca;
a-a; = 0, a’ = a'-al, PA()I = K@ = Kja,, (11.10)
and if b is a vector such that
b = bia, = ha'. (11.11)
then
b o ob; .
,,,,, = = Wi (11.12)
00T 0"
where
Sbi ob' ob, b
< = a5 TR C= kb, 13
50 = a0 TR 5p T ap Kb (L.13)
Next
gy = Aot = dy apiay
ady, ..y, ; ;
A Ay = Aoy By (11.14)
od

/"m"'agvi = 74(‘30
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and
2 = Qgis Aai = Kais

in view of (10.9). AlsoT

f :fiai’ qa,maN — qay--zNia.

i

n = n'a;, prEN = pMaNig,

ay o rani
QAN 2y ANE ANt 5p &y ant
T =7 a;, n = T—r—/{q ,

x(al“‘an)ﬂl"'/fzv — wﬂl(al“‘inﬂz"‘ﬂN)+ +wﬂN(al""1nﬁl”'ﬂN~l)~

X(dx“'dn)ﬂ — mﬂ(ﬂll“'dn)’ X(ﬂl"'dn)ﬂl"'ﬂw — X(al"'an)ﬂl"'ﬂbﬂ.ai’

o = x(az-“an)al + ... +x(al"'an*1)1n.

Then, using (11.8) and (11.9), equations (11.6) and (11.7) become

ir—lU+7_r(’“"i1,1u+ﬁim3+ﬁi733+p“"kai+ Y preNig y prINIL
N=2 N=2

and

i(ral'“an_i_Ral"'an_U“l"'an)+7—I(Aﬂ)(al"'1n”]l#+ﬁj~(al""1n)’7}.3+ﬁ(ml"'an)'133+pal

o
i BN 80

+ X(a'ma"mlmﬂmd.ﬂ.-~~ﬁNi+

2

z
™18
2
agl

par“anﬁx'"ﬁwilﬁl.

where
2”7!] = dij’
) = Ay A pre m pase A

x

N=2

1"aN”

= T PTI  p, )
N=2

2ﬁ(/1ﬂ)(a1"'1n) — X(au o) d 4 X(al o)A —pal...a"BlKﬂ‘.l __pal‘--zz,,[]uh_ﬁ

N

(n* - INAG, L ST

A

£}

i

aycAN -

D
_ iy Bd el 2
Y (prm b N gt BB,

o o
=4 _ o a3, A
=2t —pPk,) =2 Yy e, L, A2 Y prand)

+ The definition of 7' *¥* differs from that used in previous papers.

A

cani

)

o0
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(11.15)

(11.16)

(11.17)

(11.18)

(11.19)

ch

= 0’
(11.20)

ma"ﬂll'\'ﬁi

{11.21)

(11.22)

(11.23)

— Zz (X(almanw]mﬂNldﬁ,mﬂN{‘+X(11ma"m‘mlmudﬁ,-nﬂ,\vﬂ (11.24)

(11.25)
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=
Aty Hpreenk xr“omﬁ&mﬁ%}w 3 E z!iz“'&m‘im““ﬁn&fg&m&v{l
N=2

{11.26)
. "i“‘ ;;#:\ “Gnffs s;’riﬁ ;.?;s, :
% o= 0t S g R I e S (11.27)
N=2
&S X
e s g WY, x>, e e — e »
el pH3 g mﬁﬁ%é- b e 2rify Bgsé'gﬁfw«;w 2 prtaffe o i d P gsr-
N=z N=12
{11.28}

The resuits {11.23)-{11.28) arg obtained with the help of the component forms of equations
{11.8) and {11.9) which are

x
Aft X T . - - ot A AN A
R e R g PR e R S N§M2 e MRS e A Y

& (11.29)
+ Z (ﬁ&w“awﬁ}guln»ay:{ p‘xt Qwﬁiﬁg %IN“) mﬂn
&
18% — 4 pr e pR Z (o, g 3
- N {11.30)
3+ Z ipat§¢»&x3gar‘zy:i ‘“?ﬁzmiﬁz}igy«gwﬁ . &
¥=2
and
x(ax-uoenmJ\ - X(ﬁhnd}n)ﬁ.u+pnm|mmnﬁlxl}ft_pa‘mmﬂlmmﬁ?‘
.
+ ) gxmp i jmal{% . .“__},{1; TR ”}}Wé; o }
Nl
+ 2‘3‘» v e §M"*‘ﬁ!‘“ﬁ~ —p rﬂ%ﬁ}mﬁ%/}uﬁf-nﬁwfﬁ = {, {11.31)
g(ir"lzn)iﬁ Wg?&g.‘»anl+pmx u&”ﬁ:& ,,5?,1 ?&fnu”ﬂﬁ'ff&e?
- 3
+ E éxm walfrfied Ifﬁ gt ——f‘fi Ml s Fard, {Eg i } €§§3;}§

N=3

o
L (g}mm‘l”mmBNalmmgwf‘-Pjt'“'mmmmﬂ’vi;&{;;‘v..,jgg\-.s) = (L

We now use the Helmholtz free energy function 4%, where

AT = U* — THS®, (TN
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and write

pA(as3)t = A4 = Jka* de' 462,

(11.34)
pS(ass)t = AS = ffks* dot de?,
AR = f f KO% . GonA* 40" dO2,
(11.35)
ASTVTEn = ff ko= ... 6*S* do* do>.
Then, from (10.6) and (11.33),
A=U-T,S— Z SHTENT s
A (11.36)
A% — o _ TE)SUI""IH_ Z Sarnanﬂn“'ﬂwnlmﬁw
N=1
so that (11.20) and (11.21) become
ir—l[A+ToS+7})S+ Z Su;..-aNT';lmaN_f_ Z Sal...awnl.““’:l
N=1 N=1
AT+ T3 + T35+ PP (11.37)
i ; i . ch
+ Z nalmamdal“~uni+ Z palnﬂmiar'-am'_—: 0,
N=2 N=2 00
and
i(ral.“m"+Ral.“a")—A[Aal“‘a"—l-TOSZI.“G"—*- Tosal...a"
TR S SRR SN S SR T
v . , (11.38)
+ﬁ““)(a'mu")'hn+7_fm""°‘")7]13+7_f(“"““")’133+P°‘""“"B'f€pi
o @ aBieBai s e} ayoranfly B aha1..-an
+ Y ey gt Y preh Niﬂy--ﬂyi"_ﬁag =0.
N=2 N=2

To complete the theory we should discuss entropy inequalities for rods on lines similar
to those used in section 5 for shells. We leave aside this problem and, in the next section,
study the thermoelastic theory of rods starting with the three dimensional results (6.1)
and (6.2) together with definitions given in the present section.
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12. THERMOELASTIC RODS
From (10.6), (10.11), (10.14), (11.1) and (11.34) we see that+
A= AT gy Tos Vijs Kain gy evomnin Aogy gy
AT = AT Ty Ve i i Ay )

forM>1.N>2n>1, where
Vi = dij— Ay (12.2)

A;;being the initial value of a;;. With the help of (10.6), (10.11), (10.21).(10.22),{10.24)-{10.26),
(11.16)~(11.18), (11.23)(11.28), (11.34) and (11.35), by direct calculation, we obtain

go A g AT
T, ATy
. (12.3)
ShBN m_wf‘fl . SxiwnBrofn “ii_:__"
ETﬂr B aT‘Bx 13\.’
forn>1, N> 1 and
oA OA% n
=2 e = 0 >
0733 33 14
_ a4 N L
T = 2/15:‘ R Fhlas )y 2/,{{1@:?‘ ~. “25)
rald iB3
34 AAR
R0 = 2o e 2L (12.6)
4 Ap CYau
P P
Bh‘a,- 63\‘,@, ’
2
P A o =7
PRI = }W’{j_&: - p“""“"ﬁ""ﬁwi = fm e .
C 21 AN @}.m...ﬂm
forn>1.N =2 and
5 P
nz;“'d;vi — A’“ ('A_\v -, 7(11"‘1n)p81"‘ﬁ2\ii p— }"?f{_a‘:_f_’ “28)
adar--oxwi . @dﬂ,“.ﬁm

for n > 1, N = 2. In evaluating (12.5) and (12.6), we regard 4 and A% %" as functions of
33, Y23 and 3(y;, +7,2). Using these constitutive equations, the residual energy equations

(11.37) and (11.38) reduce to
dr—A| TS+ \; §uvan o, (12.9)
N=1 o ol

oo Sl
/A.(Ta""‘q"‘l’“ Rﬂ""a")—*/l( RSmu.an+ Z Sm;--.anﬂvwﬁm'[l‘g‘mﬂv) e == {), (]2]0)
N=1 ; ad

To complete the theory we require constitutive equations for h, A**"*" and R*""*" and this
will be discussed in Section 14.

+ The free energy 4 and A% " also depend on A, and the initial values of other quantities specified in (12.1).



Non-isothermal theory of rods, plates and shells 237

We observe that equations (11.23) and (11.29) determine n**, equation (11.25) determines
n*, (11.27) determines n> and (11.30) determines 7*>. Also we have the system of equations
(11.24), (11.26), (11.28), (11.31) and (11.32), as well as the last relation in (11.19). Equations
(11.24), (11.31), (11.32), (12.6),, (12.7) and (12.8), determine y***?* and the last equation
in (11.19) is then an identity. In view of (12.4), (12.5), (12.7) and (12.8) and the fact that
A and A% * in (12.1) are evaluated from (11.35) with the help of (10.11), the equations
(11.26) and (11.28) are satisfied identically in the general theory. From (11.19) and (10.24)
we see that y*4 are components of the vector

O = ffman...oan do'do*  (n>1). (12.11)

The equationsinvolvingn, p* "%, % "*"(n > 1),together with the residual energy equations,
provide a complete system of equations for determining the kinematic and temperature
variables if boundary conditions are imposed over the end sections of the rod. The vectors
(12.11) can then be found by a subsequent calculation. The relevant system of equations
for the kinematic and temperature variables are summarized below. The equations of
motion (11.5) and (11.8) in component form are

5ni 5par“ani

A e (12.12)

Xy AN

ot — A prriet — PR Y (N, BN #)
N=2
3 (12.13)
Y O = PN ) = 0,

N=2

[ve)

A3 A 3.2 A3

2 —nt 4 pPit - p S+ Y (N, gt A )
N=2

. (12.14)
Y e ) = O
N=2
The constitutive equations are
JA 04
S= -, Shrbn
T T, (N=>1), (12.15)
_ 04 _ 04 04
=24 , T =21— R = 20—
57’33 ayas T ayaﬂ ) (1216)
“i _ 0A
= (12.17)
ayani aA
=g W=D, (12.18)
@y ani aA
n - /{adap..alvi (N 2 2)’ (1219)

A= ATyp, s To, Vs Kais duyoanis Aayoans) (M 2 1,N > 2), (12.20)
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where 7, 7%, % are defined in (11.23), (11.25) and (11.27). The function A4 must be written
in a form which allows for the appropriate symmetries in 7,5, d,,...qp; a0d Ag,..,;- The
residual energy equations are given by (12.9) and (12.10). We shall not usually be concerned
with the equations which determine the vectors (12.11).

13. APPROXIMATION FOR RODS

Previously in I where temperature effects were only partly considered, a method of
approximation was suggested in order to reduce the infinite set of equations for the kine
matic quantities to finite form. As in the problem of shells, we have found that the approxi.
mation procedure is only partly satisfactory so we replace it by another here ; but at this
stage we make no approximation in the temperature.

We assume that the free energy function 4 in (12.20) can be represented by an approxi-
mate expression in terms of y;;, K, To, Ty, ..5(N = 1) only. We do not solve the problem of
how to determine this approximate form of A from the expression (12.20) which is obtained
from the full three dimensional theory. Thus, we set

A= ATy,..p0> Tos Vij> Kaihr (13.1)

approximately, where A(Tj,...5,, To, 7, Kye) is @ different function from that in (12.20;.
Using (12.18) and (12.19), it follows thatt

poiN = (), S (] (N > 2. (13.2)
The equations (12.12), are then satisfied if
gt =0 (N > 2). (13.3)
The remaining equations (12.12),, (12.13) and (12.14) become
on' . op™ .
- i ol g T i 134
sg A =0 At = 13.4)
o g pe - prrit = 0, a =t 4 pPkt —pPRe? = 0. (13.5)
Constitutive equations are
04
n?—p®3i,3 = 24—,
P 0733
0A
n*—pf3,® = A,
p ’ 6'}’(13
T 4t — p*rict - PR, = 4/1—‘31—, (13.6)
a'))iu
. 04
P ;Lakai,
oA oA
= Shiby — )
S= o1y 3Ty

t These results hold approximately, since they are obtained with the help of (13.1).
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The residual energy equations still retain the forms (12.9) and (12.10) and constitutive
squations are required for R*"* h and h*"*. We omit all equations which determine the
vectors (12.11).

Further remarks about the above approximate theory are made at the end of section 14
for the special case of straight rods.

14. LINEAR THEORY FOR STRAIGHT RODS

Starting with a theory of the form of section 13 for the case when Tj,..5, = O(N > 1),
Green, Laws and Naghdi [10] have studied a linear theory of straight elastic rods.t Only
small changes are required to allow for non zero T;,..4, so we summarize the main results
and refer to [10] for further details. We denote the initial values of the vectors a; by A; and
choose A; to be an orthonormal set with A; a unit vector along the rod. Thus

Ai-A; =6y (14.1)
If
r=0A;+u, a; = A;+b;
where u, b; are small, we can write

u= u,-A,-, bi = b,’jAj,

ou Oy,
b; = 20" 3= 2pe (14.2)
ob;;
Vg = bi+bp, ;= _5#’

since there is no distinction now between upper and lower case indices. The initial rod is
unstressed and at uniform temperature 6, and we suppose that T* in (10.6) denotes tempera-
ture differences from 6,. With the usual linearization, the equations of motion in Section 13
reduce, for a straight rod, to

on; o*u;
i ap =0
00+ if, =4 prel (14.3)
dm om, omy |
—60—1—’12 +4423 =0, W‘Fnl ~4q13 =0, *5934'4(‘112“021) =0, (144)
op ¢
Ty = Aq14 +'~é‘{§“, T2 = 4422 +—2%3,
s (14.5)
2y = 2myy = M2 +4121)+%(sz +Pa1),
where A is now the initial density and
My = P23, M2 = —Ppy3, M3 =Dpi3—piy. (14.6)

 The work of Green, Laws and Naghdi was based on an exact theory of rods obtained by separate postulates
and not deduced from three dimensional equations.
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The constitutive equations are

}13 - 2,‘{——14~,l Hp —= ,‘{é_/;{m’
33 5’?53
0A 0A
i — A’ s a - 3 .
p e Ty + Mg, = 44 Gy (14.7)
= ._é_/.l.’ B Bn . 04
oTy Ty’

where S, %1~ denote entropy differences from initial values and A is a quadratic form in
the variables

Vij» Kajs To, Tpyoopy- (14.8)
Also for a rod which is symmetric for reflections along the directions A, A,
8%by;
qpi = lgi— “”“5{5’ (f not summed), (14.9)

where I;; are components of assigned director force and «, are inertia coefficients. The
residual energy equations reduce to

oh
Ar —-1903'——56 = O,
(14.10)

e e o, ORT
Ao an 4 R ) — 2 8% 5=

Previously, Green, Laws and Naghdi [10] considered a quadratic form for the variables
(14.8)with Ty, .5, = 0 (N > 1), which was invariant under the transformations

a;, > + —a;, Ai - + -A‘., (1411)

assuming T, is unaltered by such transformations. Here we deal with non zero values of
T;,.-, and assume that Ty, ..., are unaltered when § —» —6 and that

Tyt = = Tpropms (14.12)

whena; — —a;,A; - —A, and an odd number of the indices take the value 1. Under the
same transformation of vectors a,, A,

Ty = Tproons (14.13)

where an even number of indices take the value 1. Similarly, whena, —» —a,, A, » —A,,
we have

Tytw = = Tpopns (14.14)

where an odd number of indices take the value 2 and

Tyt = Thyoota- (14.15)

where an even number of indices take the value 2.
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In the rest of this section we restrict attention to the case in which
Ty =0 (N >2), (14.16)

so that T,, Ty, T, are the only surviving temperatures. With invariance under the trans-
formations (14.11) and the subsequent conditions, the quadratic for A assumes the form

20A = kiyii+kay3a +hayis +dka(y 2 +720)° +ksy3s
+keyis+koy11v22+KksV11733 +Kov22733
Fhiokdy +kygrda + koKt s +kysrd + Rk ok,
+hysk33+kiehis+kyakg1k22+ 2k Toy 11 + 2k ToY22
+2ky0ToY33 + ka1 TE+2ky, Tik i34 2ky3 Takas + kos T2 4+ ks T2, (14.17)

From (14.17) and the other equations of this section we can obtain expressions for
stresses and entropy. The equations separate into four distinct groups, two concerned with
flexure, one with torsion and one with logitudinal extension. The two sets of equations for
flexure, including the equations of motion and energy equationst, are

on om, b
‘+lf1 LA a 39—+n1—,ul3+/1a1353 =0,
ob
ny = kelby3+b3y), m, k16 13 —k2 Ty,
5 , (14.18)
U
A5t = —kay =it —ka T, by =,
oht
}»(YI'FRI)“‘AO()S‘!'—% bt 0,
an 0%u om d%b
g A=A 602 , 70;~n2+1123~za273t7”- =0,
ob
ny = ks(bz3+bjs,), my = kys——= 662)3+k23T2’
b 5 o (14.19)
u
AS% = —kysy “—k25’1“2, b3, zuég-, Ar*+R¥)— wuszwm =0.
The equations for torsional motion of the rod are
ms %*b *b
S5 A=) = Aoy P a2,
*b 2*b
2my, =’—(P12+P21)+/1(lxz+121) i(al o 212+ 3 ail >
ob 6b
my = (ky,— 2k14) 12 —(ky3— Ik14) 21 (14.20)
T2 = ka(by2 +b21),

Pi2+pa = kg, +Ik14) +(k13+2k14)

1 The energy equations in (14.10) for n = 2 are, in fact, only satisfied by an appropriate choice for r**(n 2 2).
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and the equations for extensional motion of the rod are

6n
3+ f3 = ’?' Iz >
b a2%b
Ty = - gél“f“fl( — atil),
0 0°b
My = 2;2+A'(122 at‘iz)!
ny = 2kghyy +2koby; +4ksbs3+2ky0 T,
Ty = 4k1b11 +2k7b22 +2k8b33+2k18T0, (1421)
Moy = 2Kybyy +4kybyy +2kobs3+ 2k, 0Ty,
ab i ob
= kio—g +akir—snt,
0by, 1. 0Obyy
=k b RGeS
p 11 7 an 60 2k17 60 s
AS = —kygy11—KioV22 —k20733— k21 Tp, l"*—'wos“gé =0.

Equations (14.20) and (14.21) have been given previously by Green, Laws and Naghdi and
were derived from an exact system of equations which were not deduced from three dimen-
sional equations by approximation. These authors also gave the system of equations (14.18)
and (14.19) when T, = T, = 0. To complete the theory characterized by equations (14.18),
(14.19) and (14.21) we require constitutive equations for R!, R?, h, h', h?. These can be
obtained by separate postulates but here we derive them from the three dimensional form
of the heat conduction vector for a rod which is transversely isotropic with respect to its
length. In view of the special system of vectors A; chosen here for the straight rod in its
initial state we can regard 8', 8%, 0 as a system of rectangular Cartesian coordinates so that

oT*
q* = "“Kaja-s q*s = ""KJ—"é‘G' (14.22)

where k, k” are constants. We assume that the temperature of the medium surrounding the
rod is T, , a function of 8, and we adopt the surface condition

h* = H(T*-T,) [f(6',8% = 0], (14.23)
where H is a constant. In view of (14.16), we recali that
T* = T,+0'T, +0°T, (14.24)
approximately, where T, T}, T; are functions of 8 and ¢.

From (10.15) and (14.23), we have

= ff kr* de* d¢9? —~H§(TO—T+ —-6'T, —6*T,)do



Non-isothermal theory of rods, plates and shells 243

where, since 01, 2 are rectangular Cartesian coordinates,
ds = u' d6* —u? do?,

d. being a line element along the curve 0 = constant, (6", 6%) = 0. Recalling that the rod
has symmetries about the directions 0', 07 it follows that

Ar = Ar—HITo—T,), (14.25)

where
i = f f kr* 6l d6?, = §da, (14.26)

and [ is the length of the boundary curve of a normal section of the rod. Similarly, from
(10.29), (10.31), (14.22) and (14.23) we see that

AR*+Ar* = AP —kAT,+ HL, T, (x not summed), (14.27)

where

AP® = J‘J. ko*r*do* de?,

(14.28)
A= Jj de* do?, L= §(t9"‘)2 do.
Also, from (10.20), (10.27), (14.22) and (14.24) since here h* = g*3,
0Ty oT,
—_ — A —— @ = — ! — .2
K'A 20 h k'L, 30 (o not summed), (14.29)
where
I, = f f 6°6*d6' d6* (x not summed). (14.30)

This completes the specification of all quantities appearing in the energy equations in
(14.18), (14.19) and (14.21).

By comparing some exact solutions from the three dimensional linear elasticity with
corresponding solutions predicted by the approximate theory, we can identify some of the
elastic coefficients which occur in the approximate value of 4 in (14.17). In this manner,
Green, Laws and Naghdi [10] have previously given values for the coefficients k, s and k4.
We defer to a future occasion the problem of finding values for the remaining coefficients in
(14.17).

In view of the approximation made in the value of 4, we expect that some of the identi-
ties in section 11 {(mentioned in the paragraph after (2.10)} wili not now be satisfied. In
particular, the identity (11.19), yields

et @i _ Q) (14.31)

Also, for the linear elastic rod, (11.32) gives

(@1)43

Ao = prd, (14.32)
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approximately. Hence
priE 4 pram — Q) (14.33)
or
pit = p??2 = Q, pt24p?t =0, (14.34)

The first conditions in (14.34) provide the restrictions k,, = k;, = k,; = Oontheequations
(14.21) of the extensional theory while (14.34), provide restrictions on the torsional motion
governed by equations (14.20). The latter condition appears to lead to a theory for the
torsion of a bar for which k,, = k3, «; = a, and b,,+b,; = 0. We note here that if we
include (14.34) as part of the approximation procedure, the resulting approximate theory is
more restrictive than the corresponding results for a Cosserat curve, obtained by Green and
Laws [4] from separate postulates. However, it does not appear essential to use (14.34).
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AGcrpakT—PaccMaTpuBaeTcs noapobHas pa3paboTka HeMMHEHHBIX TEPMONMHAMUYECKMX TEODHH Crep-
KHe# ¥ 06OIOYEK, HCTIONL3YS B KAYeCTBE MCXOMHOM TOYKH, TPEXMEPHYIO TEOPHIO KITACCHYECKOH MEXaHUKH
crTomHOH cpembl. YacTh paboThl JOMONHAST M PacimMpaeT mpeabinymyio pabory mo sroMy sompocy
Ipuna, JIaeca n Harxzu (1). Mi3MeHSETCA, Takke, METOR ANNPOKCHMALMM, MCIIOIE3YEMBIH B (1), B Bugy
TOTO, ¥TO OH OKA3BIBAETCA JIOCTATOYHBIM TOJIBKO B HEKOTOPOH CTemeHH Mia pewerws 3anadn. O6paluaerca
CHeLHANBHOE BHMMAHHKE HA HEM3OTEPMHYECCKHE JIMHEHHbIE TEOPHH YNPYrnX O0OMOYEK H MPSMBIX YIPYIHX
CTepXHelH, NOJIy4eHHble B MPEALIIYLIHX YPaBHEHMAX.



