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Abstract---A detailed development of nonlinear thermodynamical theories of rods and shells is discussed using
the three dimensional theory of classical continuum mechanics as a starting point. A portion of the paper supple­
ments and amplifies the previous work on the subject by Green. Laws and Naghdi [1]. Also, the method of approx­
imation used in [IJ is altered since it has been found to be only partly satisfactory. Special attention is given to
non-isothermal linear theories of elastic shells and straight elastic rods which are derived from the three
dimensional equations_

1. INTRODUCfION

THIS paper is concerned with further developments of nonlinear (as well as linear) theories
of rods and shells which, in particular, supplements and amplifies the previous work on the
subject by Green, Laws and Naghdi [1], referred to subsequently as 1. Our starting point is
again the three dimensional theory ofclassical continuum mechanics. The three dimensional
theory is reduced to a two dimensional theory for a thermoelastic shell, or plate, and a one
dimensional theory for a thermoelastic rod by using suitable representations for the
displacement and the temperature. Before describing the scope of the paper, however, it is
desirable to recall briefly certain closely related, but independent, recent developments in the
theories of deformable surfaces and deformable curves to which frequent reference will be
made throughout the paper.

Consider a two dimensional surface to every point of which one director (i.e. a vector
which remains invariant in length under superposed rigid body motions) is assigned. A
general thermodynamical theory of such a surface-----t:alled a Cosserat surface~has been
developed by Green, Naghdi and Wainwright [2J, within the framework of two dimensional
generalized continua. A related contribution, limited to isothermal deformation of elastic
directed surfaces, has been given by Cohen and DeSilva [3). Similarly, consider a one
dimensional curve to every point of which two directors are assigned. A general thermo­
dynamical theory of such a deformable curve (or a Cosserat rod) has been developed by
Green and Laws [4J, within the framework of one dimensional generalized continua. A
related contribution restricted to isothermal deformation of elastic rods has been given by
Cohen [5J.

Further aspects of the Cosserat surface have been discussed by Green and Naghdi (e.g.
[6-9]) who, in particular, have emphasized [7,9] the relevance and applicability ofthe linear
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theory of an elastic Cosserat surface to problems of plates and shells. regarded as three
dimensional bodies. Similarly, the relevance of a linearized version of the theory of Green
and Laws [4J to straight elastic rods, regarded as three dimensional bodies, has been
discussed by Green, Laws and Naghdi [1OJ.

In the present paper, we continue the previous developments in I in an effort to illumin­
ate further our understanding of the existing theories of rods and shells, especially with
regard to thermal effects and heat conduction equations. The basic three dimensional
equations ofclassical continuum mechanics are collected in Section 2 and the remainder of
the paper is so arranged that the part which deals with shells (Sections 3-9) may be read
independently of the part on rods (Sections 10-14). For both shells and rods. we employ in
our developments an exact representation for the expansion of the displacement and a
similar exact representation for the expansion of temperature. Previously in I, an approxi­
mation for the temperature was used.

The two dimensional equations, including the energy equation. for shells in Sections 3-4
are obtained systematically from the corresponding three dimensional equations of Section
2 and appropriate entropy inequalities are deduced in Section 5 from the entropy inequality
usually employed in classical continuum mechanics. Some aspects of the thermodynamic
developments of Sections 3-5 were anticipated earlier in a paper by Naghdi [11]. Results for
thermoelastic shells, including the constitutive equations, are stated in section 6 and provide
an infinite set ofequations for an infinite number ofunknowns. Next, by approximation, we
reduce in Section 7 the infinite set of equations to a system which is formally equivalent to
that in [2J for an elastic Cosserat surface, except for more generality here in the temperature.
The method of approximation is different from that used in I since it has been found that the
procedure given in I is only partly satisfactory. In the next two sections (Sections 8-9) we
discuss linear theories ofthermoelastic shells and plates and include a detailed development
of the residual energy equations for the determination of temperature. The latter. upon the
neglect of thermo-mechanical coupling, are of the same form as the heat conduction equa­
tions derived by Bolotin [12).

For rods in Sections 10-1 L by a procedure similar to that used for shells, we obtain the
basic equations which include a one dimensional form for the energy equations. Entropy
inequalities for rods can be discussed along lines similar to those in Section 5 for shells;
however, this is not induded in the present paper. Results for thermoelastic rods, including
the constitutive equations, are stated in Section 12 and again consist of an infinite set of
equations for an infinite number of unknowns. In Section 13. by approximation, we reduce
the infinite set ofequations to a finite set formally equivalent to that in [4J for an elastic rod,
except for more generality here in the temperature. The method ofapproximation is different
from that used in I since it has been found that the procedure given in I is only partly satis­
factory. Finally, in Section 14, we discuss a non-isothermal linear theory of straight elastic
rods in detail and include the derivation of appropriate heat conduction equations.

2. NOTATION AND FORMULAE

Points of a three dimensional continuum are defined by a general convected coordinate
system Oi. Covariant and contravariant base vectors at points ofthe continuum at time tare
denoted by gil gi with corresponding metric tensors gij, gii, Latin indices having values 1,2,3.
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g/j:;;;;; g/ 'gj,

or*
gi = eei'

(2.1)

where r* is the position vector of a typical particle Oi and D~ is the Kronecker delta. The
velocity vector v* at time t is given by

Dr*
v*=--=r*

Dt
(2.2)

where DIDt or a superposed dot denotes the material time derivative (holding ei fixed).
The energy equation for an arbitrary material volume V bounded by a surface A at time t

IS

D, J. (V* +h* . v*}p* d V = J. (r* +f* .v*)p* dV+ f (t· v* - h*) dA (2.3)
D, v v A

where p* is density, V* is internal energy per unit mass, f* is the body force per unit mass, r*
is the heat supply function per unit mass per unit time, t is the stress vector and h* the heat
flux across A.

With the help of invariance conditions under superposed rigid body motions we can
deduce from (2.3) equations ofmass conservation, momentum and moment of momentum.
Alternatively these equations may be regarded as separate postulates. For our present
purpose these equations may be written in the point form

g = det gjj,

Ti,i +p*f*g+ = p*v*g+,

gixTj = O.

(2.4)

(2.5)

(2.6)

where a comma denotes partial differentiation with respect to (i. k is independent oft, and
the stress vector t across a surface whose unit normal is n is given by

uT
t=-'-'

t 'g

Also

(2.7)

where rij is the symmetric contravariant stress tensor.
With the help of (2.4)-(2.8) the energy equation can be reduced to the point form

where

(2.8)

(2.9)

(2.10)
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(2.1 1)

(1.12)

and a vertical line denotes covariant differentiation using Christoffel symbols defined
from the metric tensor gij' For later use, (2.9) may be written in the alternative form

T .'" (*1. .... )
p*r*_p*O*+·..i~~:!_~.~z J< O.

g:' g'

To complete our system of equations we need the entropy production inequality

D f. f. p*r* f 11*_.~ p*S* dV- ··--dV+ ~. dA > 0
Dt .v v T* -I T* -,

where S* is entropy per unit mass and T*( > 0) is the absolute temperature. In point form
(2.12) is

T*( *k t)p*T*S*-p*r*+--r qT: Z O.
g .k

(2.13)

Finally we observe that when given surface forces P are applied at the boundary surface
of the body, measured per unit area of the body at time t, then

p (2.14)
at the boundary.

We require generalized forms of tile energy equation and entropy production inequality
and these can be obtained from (2.11) and (2.13). Let fj> be a scalar function oftoe coordinates
(}i. For example, one form of <p to be used later in sheH theory is (83)". We multiply (2.11)
by <p and integrate throughout an arbitrary volume V. After some straightforward manipula~

tion we obtain

f!. f (u*+~v*'Y*)P*<PdV= f (r*+fl'·v*)p*lj>dV+ I (t·v*-h*)fj>dA
DtJv 2 Jv A

Again, let l/J be a scalar function of the coordinates 0; which is such that

(2.15)

(2.16)

throughout some closed region V. We multiply (2.13) by if! and integrate throughout V
to get

D f f p*r*l/J f h*if/ f q*' <7t/J- p*S*·I·dV~ --dV+ -dA- ~--.dV> O.
Dt v 'I' V T* T* v T* NY -

3. SHELLS

We adopt the convention that Greek indices take the values 1,2 and write

{2.17}

(3.1)
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The parametric equation'; = 0 defines a surface J in space at time t, which we assume to
be smooth and non-intersecting, the position vector of any point of J being given by

We assume that the continuum is bounded by the surfaces

(3.1)

~ = iX, ~ = {J (iX < 0 < {J) (3.3)

which are non-intersecting with themselves, each other, or with J, and which are such that
,J lies entirely between them. We fix the relation of the surface J to the bounding surface
(3.3) by imposing the condition

f: p*gt~ d( = f: 1«ot, 02
, .;)~ dr; = O. (3.4)

The above condition is independent oftime. so that once J is determined by such an equation
(in, say, a reference state) it remains so determined. We also assume that the continuum
is bounded by a surface

(3.5)

which is such that' = constant are closed smooth curves on this surface. We call such a
continuum a shell.

We assume that the position vector and temperature of any point of the shell at time t
can be represented by the expressions

xc·

r* r(O\ 02
, t)+ I ~NdN'

N=1

(jJ

T* = To(ot, e2, t)+ I ~NTN'
N= 1

(3.6)

(3.7)

where dN are vector functions and TN are scalar functions orot , (p, t. We also assume that
the series (3.6) and (3.7) may be differentiated as many times as required with respect to
any of its variables at least in the open region ()( < ~ < p.

From (2.2) and (3.6) we have

where

co

v* = V+ L ~NWN'
N=1

(3.8)

For later convenience we put

v = i',

d = d1 , W = WI.

(3,9)

(3.10)

Wecall the vectors dN directorsand wi\' director velocities and observe that d]\/ are unchanged
in length when the shell is subjected to superposed rigid body motions, From (2,1) and
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(3.6) we see that

" N~N-ldg3 = L . <, N'
N=l

(3.11 )'

We find it convenient to use the notation

a~/J = a~' ali'

a~ = al1./Jap.

a = det a~p,

a~).a).p = (}p,
(3.12)

and we denote the unit normal vector to the surface (3.2) bya3' a vector function of {}1, {}2, t.
In three dimensional theory of continuum mechanics it is usual to assume that

[glg2g3] > 0 (3.13)

(3.19)

(3.18)

(3.20)

(3.17)

(3.16)

for all time and all values of (]i. In particular, it is valid for ~ = 0 so that, from (3.11) and
(3.10),

[a132d] > O. (3.14)

With the help of (3.8), the energy equation (2.3) was reduced to two dimensional form in
a previous papert I. We quote the final result and refer readers to I for further details. Thus

~fp(u+~v.v+ f kNWN'V+~ f kM+NWM'WN)dO'
Dt 2 N = 2 2 M N = I

. (3.15)

= f p(r+F.V +N~l LN'WN)dO'+f(N.V+ N~1 MN'WN-h) de.

The surface integral in (3.15) is over an arbitrary element of the surface j bounded by
some closed curve c and the line integrals are around c. Also

pa! = f: p*gt de = f k d~,

pkNa! = f: ~Nk d~ (N ;::: 2),

prat = f r*k d~ - [h*(gg33}tJ~",IX- [h*(gg33)tJ~",p,

pFat = rf*kd~+[t(gg33)t]~=I1.+[t(gg33)t]~",p =rf*kd~+[T3]e,

pLNat = rf*k~J)I·d~+[t~N(gg33)t]~=I1.+[t¢N(gg33)t]~=fJ

=rf*k~N d~ + [¢NT3]~'

pUai = rU*kd';,

t As already noted in section I, throughout the present paper, I refers to Ref. [1].
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where

[1jJ(oa, ~, t)J~ 1jJ(e", p, t)_IjJ(oa, a, t).

In addition, if v is the outward unit normal to a curve c on the surface J and

then
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(3.21)

(3.22)

(3.23)

where

Naat = f Tade,

MNaat = f: eNTa; de, MOa
= N",

q"at = f q*"gt d~.

We now substitute

(n :::: 1,2, ...)

(3.24)

(3.25)

(3.26)

(3.27)

in (2.15) and follow a procedure similar to that used in obtaining (3.15) from (2.3). Thus

Df [1 00 1 00 ]p U"+-k"v·v+ L kN+"WN·V+- L kM+N+"WM'WN dO'
Dt 2 N =12M,N = 1

=fp[r"+R"+L"'V+ f LN+"·WN-m".V- f _n_mN+"'WN] dO' (3.28)
N=I N=I N+n

+ f[M'" V+ N~I MN+". WN-h"] dc,

where, in addition to quantities already defined, we have

pr"at = f: r*k~" d~ [~"h*(gg33)!J~=a- [e"h*(gg33)!1:=p. (3.29)

pU"a! = f: U*k~" d~, (3.30)

mNat = N 1'J ~N-1T3 de;

pR"at = nf: q*3;"-lgt de.

(N ~ 0), (3.31)

(3.32)

(3.33)
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(4.1)

4. FURTHER DEVELOPMENT OF ENERGY EQUATIONS

Equation (3.15) may be regarded as a special case of(3.28) when n = O. In point form,
equation (3.28) becomes

prn+ pRn_ pun+(Mn'I,+ pln_mn). v + Mn,. v.,

",. [ 11 ] .>:'
+ L MN+n'la+ pI.I'Hn mN+n . WN + L MN+na . wN,,-qn'I' = O.

N=I N+n N=I

where a comma denotes partial differentiation with respect to (F and a vertical line now
denotes surface covariant differentiation using Christoffel symbols derived from the
surface metric tensor a,p. Also,

x

F = [0 = F-v- L kNwN,
N=2

x·

[N = L N -kNv- L kM+NWM
M=I

[ = [I = L- L kM + IWM .
M=l

(N ~ 2), (4.2)

We consider a motion of the shell at time t in which the velocities differ from the given
velocities only by superposed uniform translational rigid body velocities and we assume
that these do not change the quantities rn, Rn, un, Mn" mn, [n, qnx for n ~ O. From (4.1),
we then deduce the results

N'I,+pF = 0, Mn'I,+pL"-mn = 0

With the help of (4.3), equation (4.1) reduces to

(n = 1,2, ...). (4.3)

(11 = 0,1, 2, ... ). (4.4)

Next we consider a motion of the shell in which the velocities differ from the given velocities
only by a superposed uniform rigid body angular velocity, the shell having the same
orientation as before. Then, assuming that r", Rn, un, Mn" mn, [n, qn, are unaltered by
such rigid body motions we deduce, from (4.4), the equation

Mnaxa,+ f (NN+ mN+nXdN+MN+n'XdN.,) = 0 forn = 0,1,.... (4.5)
N= I n

The case n = 0 can more conveniently be written as

'x'

N'xa
7
+ L (mNxdN+MNXxdN.,) = 0

N=l

(4.6)

which was obtained previously in I but in component form.
It is of interest to observe that the equations of motion (4.3) can also be obtained

directly from (2.5) and (3.8); and the equations (4.5) and (4.6) can be deduced from (2.6)
and (3.11).
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With the help of (4.5) the system of energy equations (4.4) can be simplified. For this
purpose, we introduce the following quantities:

dN = dNiai dN~ai' (ldNliJe~ = ANbai,

d1 = d "" diai dla il odiN)" = Ai>ai
,

ANP~ = dNPla-bpadN3' AN3. = dN3.>+b~dNP'

J.N~ = aPY2Nya, J.N~. = AN3a'

AIPa = Apa = dpla-bpadJ' A13I. = A3a = d3.a+b~dp,

A~", = aPYAya , 4~a ),3>,

(4.7)

(4.8)

Na = Niaai,

M Noc = MNiOCaj,

Then, using (4.5), equations (4.4) reduce to

1 im = m = mai,
(4.9)

where

(4.11)

Aap being the initial value of aal! and

MmfJ' = M,nocP = M"Poc_ f (~mN+nad/.+MN+n>l'Aiy).
N='l N+n

(4.12)

The first part of equation (4.12) arises from the component form of (4.5), the remaining
components giving

Equations (4.12), (4.13) hold for n 0,1,2, ... but it is more convenient to write the
equations corresponding to n = 0 in the forms

00

N,pa = N ,oc/1 = NfJ oc _ I (MN°CY,.li'l + mN'd,/),
N='l

00 00

N 3.+ L (mN3dN'_mNadN3)+ L (MN3'1AN~y-MNOC'lAN~~) = o.
N='l N~l

(4.14)

(4.15)

At this point we introduce the three dimensional Helmholtz free energy function A*
by the equation

A* = u* - T*S*. (4.16)
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Then writing

we have, from (3.7) and (4.16),

A. E. GREEN and P. M. NAGHDI

psna+ = rS*k~n d~,

pAna+ =rA*k~n d~.

.£

An = Un_ L sN+nTN.
N=O

(4.17)

(4.18)

(4.19)

Equation (4.10) now becomes

prn+PRn_p[An+ N~O (SN+nTN+SN+ntN)] _qM1a +M,"Pa1Ja/i

+ f (~mN+nid .+MN+niaA . ) = 0
N=l N+n N. Nla'

5. ENTROPY INEQUALITIES

We first recall that l/J 2 0 in the entropy inequality (2.17) and set

(4.20)

l/J = (-0: + ~)n

In addition, remembering that T* > 0, we put

(0: ::;; ~ ::;; /3). (5.1 )

so that, in view of (3.7),

(5.2)

r

L TNE>r-N = 0
N=O

(r = t, 2, ... ). (5.3)

(5.4)

If we substitute (5.1) and (5.2) into (2.17) and reduce the resulting equation to point form
we obtain the inequality

p f (n)( _o:)n-r[sr - f rr+NE>N] + f (n)( _et)n-r f (qr+Na,aE>N+qr+NaE>N.a)
r=O r N=O r=O r N=O

_p
ni 1

(n-l)(_0:)n-r-l f n W+ N+1E>N:2':0.
r=O r N=or+N+t

In view of(5.3),

sr - t E>N[Ar+N + I SM+~+rTM]
N=O M=O

= sr - I E>N[Ar+N + f SM+N+r t M] - f f sn+rE>n_NTN
N=O M=O n=O N=O

- f E>N[Ar+N + I SM+N+rtMJ.
N=O M=O

(5.5)
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Substituting for rn from (4.20) into (5.4) and using (5.5), we finally obtain the inequalities

+ I M mM+N+ridMi+ I MM+N+ri'AMi'+~PRN+rJ (5.6)
M=!M+N+r M=! N+r

+ I qN+r>SN.,} 2': ° for n = 0,1,2, ....
N=O

6. THERMOELASTIC SHELL

Two methods are available for finding constitutive relations appropriate for an elastic
shell. In the first method we start with the three dimensional thermoelastic equations

cA*s* = --­
cT*

(
cA* CA*)rrs = ~p* _+_
cYrs cYsr

wheret A* is a function of T* and strain }'rs given by

Yrs = i(gr' gs - Gr' Gs),

(6.1 )

(6.2)

(6.3)

Gr being the value of gr in some preferred initial state. From (3.7), (3.11), (3.16) and (4.18)
we see that An can be expressed in the form

An = An(TN, e,p, dMi , AMi')' (6.4)

Also An depends on initial values of dMi , AMi, and TN' In (6.4), N, n = 0,1,2, ... and
M = 1,2, .... With the help of (3.11), (3.24), (3.25), (3.31), (4.9), (4.12), (4.13), (4.16), (4.19),
(6.1) and (6.2), a direct calculation yields

(n = 0, 1,2, ... ; M = 0,1,2, ...),

(r = 0, 1, ...),

(n = 0, 1, ... ; N = L 2, ... ),

(6.5)

(6.6)

(6.7)

(n = 0,1, ... ; N = 1,2, ...). (6.8)

In addition

t The free energy A* also depends on the initial metric tensor G'"

(6.9)
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and the residual energy equation is
( *k 1)

p*r*-!L~--~-p*S*T* = O.
go: (6.10)

From (6.10) we can, by integration and use of (3.7), obtain the residual energy equations

Jp(rn+R") dlT- Jp Mto sn+MTMdlT- ~ hnde = 0,

or
J.'

p(rn+Rn)_p L: sn+MTM_qn'I, = O.
M=O

(6.11)

Using (3.7), by integration of (6.9) we obtain the inequalities

±(n)(_o:)n-r f [~PRr+NTN+qr+N'TN.,J ~ 0
.=0 r 1'1=0 r+N

(r = o. 1. ...). (6.12)

By noting that (6.9) is equivalent to

q*kE>1 ~ O.

instead of(6.12), we can deduce the equivalent inequalities

f (n)(_o:r-r f [~PRr+NE>N+qr+N'E>N.,J ~ 0
.=0 r 1'1=0 r+N

(n = 0,1, ...). (6.13)

(6.14)

(6.16)

(6.15)

(n ~ 2)

Alternatively, we may start with the inequality (5.6) and suitable constitutive assump­
tions and again deduce all the results (6.5H6.13) but we omit details.

In addition to equations of the present section, we have equations of motion (4.3), and
equations (4.14) and (4.15) which give values for N'P and N 3,. Also we have the system of
equations (4.12) and (4.13) for values of n = 1,2 .... Equations (4.12H4.15) essentially arise
from the symmetry of the three dimensional stress tensor; and in view of(6.6H6.8) and the
fact that An in (6.4) is evaluated from (4.18) with the help of (3.11), the set of equations (4.12)
and (4.13) is satisfied identical1y. As a result there is some redundancy in the equations we
have obtained for a thermoelastic shell and we summarize the essential equations below.
The equations of motion (4.3) in component form are

NP'I,-b~N3'+pFP = 0,

N 3, +b NP'+pF3 = 0I' ,p ,

MP'I"-b~M3'+pU = mP,

M3, +b MP'+p[3 = m3
I' ,p ,

~P'I,_b~~3'+ pPP = mnP,

~3' +b ~p,+ p[n3 = mn3
I' ,p •

~ J.

N 3,+ L: (mN3 dN~-mN'dN~)+ L (MN3)AN'r-MN'Y)'N3),) = 0,
1'1= I 1'1= I

x'

N'P' = N'"P = NP'- I (MN'YANP)'+mN'dJ,).
1'1=\

(6.17)
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Writing A for AO the constitutive equations are

SN = _ (JA
(JTN

and

(N=I,2, ...),

221

(6.18)

(6.19)

MNia = p (lA
(JANia

A = A(TM , eaP' dNi , AN;a)

The residual energy equations are

(N = 1,2, ...),

(M = 0, 1, ... ; N 1,2, ...). (6.20)

00

p(rn+Rn)_ L sn+NTN_qnalct = 0
N=O

(n = 0, L ...), (6.21)

and the entropy inequalities are

f (n)(_at-r f [~PRr+NTN+qr+NaTN.aJ ~ 0
r=O r N=O r+N

(1' = 0, 1, ...). (6.22)

To complete the theory, constitutive equations are also required for R n and qnct but we only
consider these for linear elastic isotropic plates in Section 8.

7. APPROXIMATION FOR SHELLS

In I where temperature effects were only partly taken into account, a method ofapproxi­
mation was suggested in order to reduce the infinite set ofequations for kinematic quantities
to finite form. In a recent detailed examination of the linear theory of isotropic plates we
have found that the approximation procedure is only partly satisfactory and hence a
different procedure is discussed here. t At this stage we make no approximation about the
temperature.

We assume that the free energy function A in (6.20) can be represented by an approxi­
mate expression in terms of ectp, d;, A;a, TN(N 0.1, ...) only. We do not solve the problem
of how to determine this approximate form of A from (6.20) which was obtained from the
fuJI three dimensional expression for the free energy. Thus, we set

A = A(eaP, Aia, di , TN) (N = 0,1, ...), (7.1)

approximately, where A(eaP' Aia,d;, TN) is a different function from that in (6.20). Using
(6.19h.3' it follows thatt

(N ~ 2). (7.2)

t A companson of shell theory and classical three dimensional isothermal elasticity has been discussed
recently by Sensenig [13J from another point of view.

t These results hold approxImately. since they are obtained with the help of (7.1).
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where

The equations of motion (6.16) are then satisfied if

[Ni = ° (N ~ 2)

and the remaining equations of motion (6.14), (6.15) and (6.17) become

N(J~I~_b~N3a+pF(J = 0,

N 3'h +b'LpN(3, + pF(3 = 0,

MP~I~-b~M3'+pP = mfJ ,

M 3a
l,,+b,,(lMfJ"+p[3 = m3,

N 3, +m3d" - m~d-'l +M 3y}.:\ - M")'A~y = 0,

NiP, = N,afJ = N(31_MCll')/J;.+m"dP.

(7.3)

(7.4)

(7.5)

(7.6)

FP = pP-v·aP,

P = LP - Pw .afl ,

F3 = F 3 - V•a3 ,

[3 = L 3 k2w.3 3 ,
(7.7)

approximately.
Constitutive equations are now given by

SN = _{1A

(1TN'

1(3 1 (CA VA)
N a = 1. p ce"p + 8~~~ .

. ?A
MlX = p--::,-,

GA.;"

0.8)

and constitutive relations are still required for q'" and R" before the residual energy equa­
tions

ex'

p(r"+R")-p L $n+NTN_q"al~ = 0
N=O

(n = 0,1, ...) (7.9)

are completely specified. Such constitutive equations are subject to restrictions imposed by
the inequalities (6.22).

We recall that equations (4.12) and (4,13) for n :2= 1 are identities in a complete theory
for elastic shells. Since the expression (7.1) for the free energy A is no longer exact, we expect
that some of these equations may not be satisfied by the approximation used in obtaining
(7.1H7.9). In fact, in view of (7.2), only equations corresponding to n = 1 in (4.12) and (4.13)
are violated and these equations reduce to

(7.10)

However, in the case of linear plate theory it is found that the first result holds and only
(7.10h is not satisfied. The set of equations (7.4H7.8) is formally the same as those derived
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by Green, Naghdi and Wainwright [2J from separate postulates, apart from the extra
generality here in the temperature terms.

8. LINEAR THEORY

Here we summarize some aspects ofthe linear theory of thermoelastic sheIls based on the
results of Section 7. Apart from the extra generality here concerning temperature, the
results are expressed in the form given recently by Green and Naghdi [9].

The curvilinear coordinate ~ in Section 3 is chosen so that initiaIly, in (3.6),

(N 22), (8.1 )

where A3 is the unit normal to the initial middle surface ~ = °of the shell. The initial values
of ai' ai, a,p, b,p, . .. ,di , Ai, are denoted by

(8.2)

We assume that initiaIly the shelI is in equilibrium under zero stresses and at uniform
temperature 80 and we suppose that T* in (3.7) denotes temperature difference from 00 ,

Also

D, = 0, (8.3)

Ifu is the displacement vector for points on the middle surface of the shelI, we set

so that

Also

(8.5)

where

(8.6)

The equations of motion (7.4)-(7.6) reduce tot

(8.7)

(8.8)

(8.9)

(8.10)

t See Green and Naghdi [9]. The notation of the present paper differs from that used by Green and Naghdi
[8, 9J in the ordering of some indices.



224 A. E. GREEN and P. M. NAGHDl

where p is density of the initial shell and pP, p3, P, LJ are components referred to the initial
base vectors Ai' The constitutive relations (7,8) reduce to

SN = _?~.
eTN '

N'J./! = I.p(_~_+~.~_),
2 ce~fl (,efJ~

. (lA
,"vI'x = p-l-_._'

( f.';x

. i'A
J"
~ = P71;;"

( Vi

where SN denotes entropy difference from initial values and

A = A(e:x/J,Pi.,6j , TN),

dependence on A.p and B.p being understood, The energy equations (7.9) reduce to

p(r" + R") - pOoS" q"·I. = O.

9. LINEAR THEORY FOR PLATES

(8.11)

(B.12)

(8.13)

We now consider the results of Section 8 in more detail for the linear theory of plates of
uniform thickness ho. The function (8.12) for a plate which is initially unstressed and at
uniform temperature 00 is quadratic in the variables eaP' Pi., <5i , TN' Green and Naghdi [7J
have given an explicit expression for an isotropic Cosserat plate when TN = O(N ~ 1).
These authors [7J also considered the further restriction such that the strain energy A
imitates the symmetry properties ofa three-dimensional plate which is transversely isotropic
with respect to normals to the plate. In the present context, this latter restriction imposes the
condition that A is invariant under the transformations

(9.1 )

where, for a plate,
(9.2)

Thus

2pA = [IXI A"PAr~ + IX2(A"rAP~ + A'~ APY)Je.pey~ +Gl:3A"P()'()fl + Gl:4()~

+ [IXsA'P AYo + 0!6A"Y A/lli +a7A"~Aflr]p.ppyil + IXsA"oP3.P3fl + 2IXq A"Pexo ()J

if. 7

+283 L P2N T2N+ 2A"Pe,,/1 L /iZNT2N+2Axflp"fl L /32N+I T1N + I
N=O N=O N=O

(9.3)
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From (8.11) we then obtain expressions for stresses and entropy. Inspection of these
expressions and of equations (8.8) and (8.9) shows that the basic equations for stretching
and bending of the plate separate into two groups. The first group concerned with stretching
are

'X'

N'~I' = N~I':=;;; [txlA~I'AYO+tx2(A~YAI'O+A~oAI'Y)JeY<l+tx9A~P63+A"/i I /3 2N T2N ,
N=O

''X

v3 = C(4J3 +txqA"Peap + L: /32N T2N ,
N=O

(9.4)

cr,

_pS2N = /3 2N63 + (J2NA"Pe"p + I }'2M, 2N T2M ,

M=O

p(r2n +R2") _ p{)os2n _ q2n,\ = o.

The equations for bending of the plate are
y,

M~P = [asA"PAY<l+O:6A~YApo+C(7A"<lAPYJpyo+AaP I (J2N+l T2N + 1 ,

N=O

'X',

SlN + 1 - n A"fJ \" T-p -/'2N+l P"p+ 1... '}'2M-r1.2N+l 2M+I,
M=O

(9.5)

(9.7)

(9.6)T+(~ > ~ho),

and that at the surfaces of the plate

hoi' = H(T* - T+) at ~ = ~ho,

hoi' = H(T*-L) at ~ = -tho,

p(r2n + 1 + R2n+ l)_ peos2n+ 1 _ q2n+ 1~1" = O.

To complete the systems ofequations (9.4) and (9.5) we require constitutive equations for R"
and qncx and values for rn. These can be obtained by separate postulates but we derive them
here from the three-dimensional form for the heat conduction vector using (3.29), (3.32) and
(3.33) and appropriate conditions at the surfaces ~ = ±~ho of the plate, where ho is a
constant. We assume that the temperature of the medium on either side of the plate is given
by

where H is a constant. For a transversely isotropic plate

(9.8)
where

K ~ 0,

It follows from (3.29) and (3.32) that

K' ~ O. (9.9)
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where

(9.10

Hence

(9.12)

and

p(rZII +1+ RllI+ I) = pr2n + 1 -H[2N~O (~O) lll+2N+2 T
2N

+ 1 _ (h20 ) 21l+' (T+ - L)J
(9.13)

", (2N+l)'T' (h )2n+2N+l
-2(2n+l)K'I - llN+I ~ •

• N = 0 2/1 +2N + 1 2

where, in (9.12) and (9.13), n = 0,1, 2,. '"

Expressions for qllCl. are obtained from (3.33), (9.8) and (3.7). Thus

(9.14)
qlll+lCl. =

t'. T (h )ZII+2N+1- 2KACl./l I... IN./! ~~

N = 0 2/1 +2N + 1 2 '

t T (h )11l+lN+3
_ 2KACl.P I -_....!!!.-~'.:I!..- ~.

N=O 2n+2N +3 2 .

This completes the basic set of equations which, however, involve an infinite set of
temperature variables To, T" . ... For applications it is necessary to make approximations.
Here we restrict our attention to an approximation in which we set

(N ~ 1).TZN = 0,

From (9.12) and (9.13) we then have

p(ro + RO) = pro - H[2To- T+ - L],

(9.15)

(9.16)

p(r 1 +R 1
) = pr1-H[ihlT, -tho(T+ - L)]-K'hoTj •

Also, equations (9.14) reduce to

(9.17)

(9.18)

(9.19)

The energy equations in (9.4) and (9.5) corresponding to n = 0 now become

OO;t-(Yo.o To+fJoD3 +!JQAXlle,,/l)+KhoV1To+ pro -- H[2To- T+ - L] = 0, 19.20)
(
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and

OO~(Yl 1 T1 + fJ lAaPPafJ) +Kh~V2Tl +pr 1 -iH[h6Tl - ho(T+ - T_)] - K'hoT1 = 0, (9.21)ot ' 12

where V2 is the two dimensional Laplacian operator. If in (9.20) and (9.21) the strain
components (which represent the effect of thermo-mechanical coupling) are omitted,
we recover equations of the same form as those derived by Bolotin [12] for shells.

We close this Section with some remarks about the determination of the constants
in (9.3). By comparing some exact solutions from the three dimensional linear elasticity
with corresponding solutions,predicted by the approximate theory, we can identify most
of the elastic coefficients which occur in the approximate value of A in (9.3). In this way,
some of the coefficients (Xl, ••• , (X9 were determined previously [9] as follows:

where

'7(1- '7)D
(X 1 = (X9 = 1 _ 2'7 '

(X6 = (X7 = t(l-'7)B,
(9.22)

D = Eho
1 2'-'7

(9.23)

E being Young's modulus and '7 Poisson's ratio. Ifwe include (7.10h in the present approx­
imation, we find that (xs = 0; if we disregard (7.10h, then (xs is arbitraryt. The coefficient
(X3 cannot be determined as a constant by comparison with a three dimensional solution,
and it seems preferable to allow (X3 to have different possible values depending on the
particular context in which the approximate theory is used. In particular, consider the
problem of torsion of a rectangular strip of breadth a and thickness ho and use (9.5) to
obtain the formula for torsional rigidity, i.e.

where J1 = E/[2(1 +'7)] and

h~a[ 2J" a]
11- 1--tanh-
f'" 3 a 2J" , (9.24)

(9.25)

It is known from a similar result in Reissner's plate theory [14] that the formula (9.24)
gives good results for a wide range of values of a/hoif

(9.26)

In view of (3.7) and the approximation (9.15), it is not difficult to make the identification

Po = P~ = - Eho
iX,

1-2'7

where (X is the coefficient of linear expansion.

(9.27)

t We recall that in the theory of a Cosserat plate [7], the coefficient corresponding to ()(s is not zero.
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to. RODS

The notation in this and following sections must be regarded as separate from that
in Sections 3 to 9 so that no confusion need arise over different uses of the same symbol.

The parametric equations

Oil = 0 (1O.1l

define a curve c in space at time t. We assume that the curve c is sufficiently smooth and
nonintersecting. The position vector r of any point of c is given by

r = r(O, t) r*(O,O, 03
• t) (10.2)

We also assume that the region of space occupied by the continuum is some neighborhood
of c which is bounded by a surface

(10.3)

(I 0.4)

such that () = constant are curved sections of this continuum bounded by closed curves.
We call such a continuum a rod. We fix the relation of the curve c to the boundary surface
(10.3) by imposing the conditions

ff p*(g}!OIX dOl dOl ff k(()l, (p, O)OIX dOl dOl = 0,

the integration being over any surface 0 constant bounded by (10.3). We observe that
these conditions are independent of time t so that once c is determined by such equations
(in, say, a reference state) it is determined for all time.

We assume that the position vector and temperature of any point of the rod at time t
can be represented by the expansions

r* = r(O.t)+ 2:0IXIOIX2 ... 0IXNdIXI1X1"IXN
fI/

T* = To(O. t) + 2: (}11{)1X1... OIX NI:11X2'''IXN
IV

(l0.5)

(10.6)

where d IX11X2 '''IXN are vector functions and 'I;,11X2'''IXN are scalar functions of (J, t. both being
completely symmetric in the indices (Xl' (X2' •.• ,(XN' The summation in (l0.5) and (10.6)
is over all values of at, az, ... , afl/ = 1,2 and N = 1,2,3, .... We assume that (l0.5) and
(l0.6) may be differentiated as many times as required with respect to any of their variables.

From (2.2) and (10.5) we have

v* = v+ L: OlX
t

(JiX
2

••• (JIXNWlXtlXl --IN

IV

where

(10.7)

v = r. (10.8)

For later convenience we put

(10.9)

We call dIXI1X2'--IXN directors and W IXI1X2 ---"'" director velocities and observe that d"tIXl'--:X'" are
unchanged in length when the rod is subjected to superposed rigid body motions. We also
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use the notation

229

(10.10)

where 33 is a tangent vector to the curve (10.2). From (10.5) and (2.1) we see that

if!

gp = 3p + I N(p2Ba, ... BaNdpa2a""aN'
N~2

if!

g3 = 3 3 + I Ba'Ba2... BaNodala,,"aN/8B.
N~'

With the displacement function (10.5) the restriction analogous to (3.14) is

[3,3233] > O.

(10.11)

(10.12)

For the rest of this Section we consider an arbitrary element of the rod bounded by
the surfaces B = ex, B = fJ (fJ ~ B~ ex), and a surface (10.3).

With the help of (10.7), the energy equation (2.3) was reduced to one dimensional form
int I. We quote the final result and refer readers to the previous paper for details. Thus

(10.13)

=f<P2 p[r+f'V+ f lal ...aN'Wal ...aN](a33)tdB+[n.v+ £ pal ...aN'Wal ..aN_h]<P2,
<PI N~' N~' <PI

where ex ~ <Pt ~ B~ <P2 ~ fJ and

[!P(B,tlJ*; = !P(<P2,t)-!P(<p"t).

(N ~ 2),

Alsot

p(a33)t = ff p*(g)t dB' dB 2 = ff k dB' dB 2
,

pka1 '''aN(a33)t = ff kBa, ... BaN dBI dB2

pr(a33)t = ff kr* dBI dB2
- f h*(u' dB 2

- u2 dBI )gt,

pf(a33)i: = ff kf* dB' dB 2 + f (T I dB 2
- T2 dB I

),

pIa,· 'a N(a33)i: = Jf kf*Ba l ... BaN dB I dB 2 + fBa, ... BaN(T, dB 2 - T2 dB'),

pU(a33)i: = ff kU* dBI de 2
.

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)

t As noted in section I, I refers to Ref. [ll
t In view of (10.4), e = o.
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In (10.15H10.18), the double integrals are over any section e = const. of the rod bounded
by the surface (10.3) and the line integrals are along the curve

e = constant, (10.19)

In addition,

h = ff h*(gg33)t del de2 = ff q*3gt del de2
,

n = ffT 3 del de2
,

pal"'aN = f f eal'" eaNT3 del de2 .

We now substitute

(10.20)

(10.21)

(10.22)

(10.23)

<p = eal '" ean

in (2.15) and follow a procedure similar to that used in obtaining (10.13) from (2.3). Thus

__f<l>2 { [ at'''an Rat'''an + lat·"an . + ~ lal·"anP,·"PN. J( )1:P r + v f..., WP1"'PN a33
<1>1 N=l

_nal ···an . v- f (roat(a2"'anPl"'PN) + ... + roan(at'''an - lPt"'PN) . WPl"'PN} de
N=l

[
at"'an ~ a,"·anP,···PN. hat ...anJ<I>2+ p ·v+ f..., P 'WPt'''PN-

N=l <1>1

where, in addition to quantities already defined, we have

na = roa = ffTa del de2
,

hal "'an = ff eal ... eanh*(gg33)t del de2 = ff ea, ... eanq*3gt del de2
,

pRat'''an(a33)1: = ff [q* al ea2 ... ean + '" +q*aneal ... ean-l]gt del de2
,

pRa(a33)t = ff q*agt del de2
,

(10.24)

(10.25)

(10.26)

(10.27)

(10.28)

(10.29)
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pua,"'a"(a33)+ ff k()a, ()anU· dOl de 2
,

proc""oc"(a33yi = f f kOoc , Ooc"r* dOl d(F - f(}oc' •.• (}oc"h*(u i d02 u2 d(1)gt.

231

(10.30)

(10.31)

11. FURTHER DEVELOPMENT OF ENERGY EQUATION FOR RODS

In view of (10.14)1> p(aB)i is a function of eand is independent of time so we set

(11.1 )

Equations (10_13) and (10.23) in point form become

(11.2)

and

where, in addition to notation already specified, we have

(11.4)

We consider a motion of the rod at time t in which the velocities differ from the given
velocities only by superposed uniform translational rigid body velocities and we assume
that these do not change the quantities r, roc,"'oc", R oc""7", U, U"""'7", n, p7""il", qil''''7nf 1:
m2'(72 'an), h, haj'''a". It then follows from (11.2) and (11.3) that

an _ cpat"'lln
ilO +)J 0, Aqa" 'a" +~ = n

21 'an

With the help of (11.5) equations (11.2) and (11.3) reduce to

(11.5)

(11.6)
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+ I (roPd'!"'nJl, "/iN) + ... +roPN('! "'nP, '''/l"" - ") . WII! 'II
N

(11.7)
N= I

+ I p'I"'nP!'PN. cWp!-~_~~'l_~'= 0,
N = 1 (10 (10

Next we consider a motion of the rod in which the velocities differ from the given
velocities only by a superposed uniform rigid body angular velocity, the rod having the
same orientation as before. Then, assuming that the same quantities mentioned above are
unaltered by such rigid body motions, from (11.6) and (11.7), we deduce the equations

(11.8)

(11.9)

and

a 3 x p'I""n +a, x ro'('1 "'n) + I d/l! "Ji
N

X (ro/l d ',. "n/I,'''/I",,) + ... +roPN("""n/ll . /iN - I))

N=2

+ f odp1 '''/IN X p'I" 'n/ll'''/iN = o.
N= 1 (10

It is of interest to note that the equations of motion (11.5) can be obtained directly from
(2.5) and (10.7); and the equations (11.8) and (11.9) can be deduced from (2.6) and (10.7).

With the help of (11.8) and (11.9), the equations (11.6) and (11.7) can be simplified.
For this purpose we need to introduce further notation. Thus, let

(11.10)

and if b is a vector such that

then

where

(ib e5bi (5b j i

(10(j0 aj = (58 a ,

(11.11)

(11.12)

Next

(11.13)

ad.~~ "N_ __ 1 '1 .
.-- IL at - It .""N'a,"(10 'I ..,,,,,i -'I" (11.14 )
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and
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(11.15)

in view of (10.9). Alsot

(11.16)

(11.17)

(1 U8)

Then, using (11.8) and (11.9), equations (I 1.6) and (11.7) become

(11.19)

y, Y ?h
Ar - AU + jf().IJ)11 AIJ + jfA,lA3 + jf'l33 + p,i';;,i + I n"""Nid" "'Ni + I p"·"'NiA". "Ni - (~o = 0,

N~2 N~2

(11.20)

and

(11.21)

where

(11.22)
X!

')';;:(AIJ) = ~AIJ+~IJA_p'AL' lJ_p'IJ/(, A_ '\' (~'I''''NAd 1J+~'I''''NIJ(i A)
.... /1" JL. Jl" n..z. x' L... JL (ll,·':t.N' IL. ClI" 'rJ.N'

N~2

(11.23)

'x

- I (X("·"'nl/lt· 'PNAdp''''PNIJ + l"""n)P""PNlJdp, ...p/)
N~2

'x

I (p" ""nPl"'PNAAPl" PN IJ + p" ''''nP,'''PNIJ).Pl"'P/)'
N:::=:.2

IX' x,

jfA = 2(IIA
- p'3/(/) _ 2 I n'I"" N3

d"''''N
A- 2 I p" "'N3 )'2'''''N A,

N~2 N~2

t The definition of IT" '." differs from that used in previous papers.

(11.24)

(11.25)
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(I 1.27)

01.2&)

The results (11.23)-(11.28) are obtained with the help ofthe component forms ofequations
{l and (tl,9) which are

(11.29)
CfJ

+ I (p~I .. ·"tN~).""",,/ - p,x\ "'''N'\L'''-'''N~) ;::::: O.
N=Z

(11.30)

and

+

+

We now use the Helmholtz free energy function .4*, wber¢

,4* -;:::; U* - T*S*,
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and write

pA(a33yt = AA = ff kA* del de2
,

pS(a33)1: = AS = ff kS* dOl de2
,

lA~''''~" = ff kG'" O~"A*dGld02,

AS"''''''" = ff kW' O""S* dOl d02
.

Then, from (10.6) and (11.33),

00

A = U-ToS- .L S"''''''NTa''''''N'
N=l

so that (11.20) and (11.21) become

Ar-l[A+TOS+TOS+ f S""""NTa''''''N+ f S""""NTa"""N]
N=l N=l

+ jf(A/l)ry A/l + jfA'1A3 + jfry 3 3 +p"iK"i

00 • 00 • ah
+ .L n"''''''N'd''''''''Ni+ .L p"''''''N'Aa''''''Ni- ae = 0,

N=2 N=2

and
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(11.34)

(11.35)

(11.36)

(11.37)

(11.38)

To complete the theory we should discuss entropy inequalities for rods on lines similar
to those used in section 5 for shells. We leave aside this problem and, in the next section,
study the thermoelastic theory of rods starting with the three dimensional results (6.1)
and (6.2) together with definitions given in the present section.
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12. THERMOELASTIC RODS

From (10.6), (10.11), (10.14), (1Ll) and (11.34) we see thatt

(12.11

for M 2: I, N 2: 2,11 2: I, where

~'ii = (Iii-Aij, (12.2)

Ai) being the initial value ofau' With the help of(1 0.6), (10.11), (10.21), (1 0.22), (l 0.24HlO.26),
(1 t.16Hl1.l8), (11.23Hl1.28), (l 1.34) and (11.35), by direct calculation, we obtain

cA~J"'X"

(12.3)

for n 2: 1, N 2: 1. and

(12.4)

(12.5)

(12.6)

(12.7)

for n 2: I, N 2: 2, and

(E8)

(12.9)

(12.10)

for 11 2: I, N 2: 2. In evaluating (12.5) and (11.6), we regard A and Ax'· ..." as functions of
J'33., }'l} and ~()'"I' + Ylll)' Using these constitutive equations, the residual energy equations
(11.37) and 01.38) reduce to

( ~ ) ~Ar-A ToS+ N'·{S"-j ..··N4., ...'N -;() 0,

(

:c' ) aha, .. ·,,,
;.(r"·":>:"+R,,"·a")-A Tosa,."a,,+ I S'j'''a"fJ''''fJN~''''PN -_:_-J(j- = O.

N-t ..

To complete the theory we require constitutive equations for h, hXt
"':>:" and R:>:,"'a" and this

will be discussed in Section 14.

t The free energy A and A""'" also depend on AI) and the initial values of other quantities specified in (I ~.I).
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We observe that equations (11.23) and (11.29) determine n).", equation (11.25) determines
n\ (11.27) determines n3 and (11.30) determines n).3. Also we have the system of equations
(11.24), (11.26), (11.28), (11.31) and (11.32), as well as the last relation in (11.19). Equations
(11.24), (11.31), (11.32), (12.6h, (12.7) and (12.8h determine la""a.»)'i and the last equation
in (11.19) is then an identity. In view of (12.4), (12.5), (12.7) and (12.8) and the fact that
A and Aa,···a. in (12.1) are evaluated from (11.35) with the help of (10.11), the equations
(11.26) and (11.28) are satisfied identically in the general theory. From (11.19) and (10.24)
we see that X(a, ···a.)).; are components of the vector

(n ~ 1). (12.11)

The equations involving n, pal ···a., na,·"a. (n ~ 1), together with the residual energy equations,
provide a complete system of equations for determining the kinematic and temperature
variables if boundary conditions are imposed over the end sections of the rod. The vectors
(12.11) can then be found by a subsequent calculation. The relevant system of equations
for the kinematic and temperature variables are summarized below. The equations of
motion (11.5) and (11.8) in component form are

(12.12)

00

n)." - n"). +pa"K/ - pa).K/ + L (na""aN"da""aN). - nal"·aN).da''''aN~)
N=2

(12.13)

(12.14)

The constitutive equations are

(12.15)

(12.16)

(12.17)

(N ~ 1),
oASP''''PN =

OTp''''PN

na = 2A oA n(aPl = 2A oA
0Ya3' OYaP'

JA
s= -oT

o
'

oA
n=2A­

OY33'

pai = A oA
OKa;'

(N ~ 2), (12.18)

(N ~ 2),na""aNi = A oA
oda""aNi

A = A(Tpl"'PM , To, Yij, Kai , da''''aNi' Aal"'aNi) (M ~ I,N ~ 2),

(12.19)

(12.20)
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where n(lX!ll, nIX, nare defined in (11.23), (11.25) and (11.27). The function A must be written
in a form which allows for the appropriate symmetries in YIXP' dlX''''IXNi and A"""IXN;' The
residual energy equations are given by (12.9) and (12.10). We shall not usually be concerned
with the equations which determine the vectors (12.11).

13. APPROXIMATION FOR RODS

Previously in I where temperature effects were only partly considered, a method of
approximation was suggested in order to reduce the infinite set of equations for the kine
matic quantities to finite form. As in the problem ofshells, we have found that the approxi·
mation procedure is only partly satisfactory so we replace it by another here; but at this
stage we make no approximation in the temperature.

We assume that the free energy function A in (12.20) can be represented by an approxi­
mate expression in terms ofYij, KIX;, To, 1fJ""PN(N ~ 1) only. Wedo not solve the problem of
how to determine this approximate form of A from the expression (12.20) which is obtained
from the full three dimensional theory. Thus, we set

(13.1)

approximately, where A(1fJ""PN' To, Yij, KIX;) is a different function from that in (12.20;.
Using (12.18) and (12.19), it follows thati

(N ~ 2). (13.2)

The equations (12.12h are then satisfied if

(N 22). (13.3)

The remaining equations (l2.12h, (12.13) and (12.14) become

bni . bpl1.i
bf) +AI' = 0, ).qlXi +7)ii = 1tl1.i, (13.4)

(13.5)

Constitutive equations are

t These results hold approximately, since they are obtained with the help of (13.1).

(13.6)
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The residual energy equations still retain the forms (12.9) and (12.10) and constitutive
equations are required for RIXI"'IX", hand hlX!'''lXn. We omit all equations which determine the
vectors (12.11).

Further remarks about the above approximate theory are made at the end ofsection 14
for the special case of straight rods.

14. LINEAR THEORY FOR STRAIGHT RODS

Starting with a theory of the form of section 13 for the case when 1'p1"'P/V = 0 (N ~ 1),
Green, Laws and Naghdi [to] have studied a linear theory of straight elastic rods. t Only
small changes are required to anow for non zero 1'p."'PN so we summarize the main results
and refer to [10] for further details. We denote the initial values of the vectors ai by Ai and
choose Ai to be an orthonormal set with A3 a unit vector along the rod. Thus

If

(14.1)

r = OA 3 +u,

where U, bi are small, we can write

ai == A;+b;

au·
b3·=-', 00' (14.2)

since there is no distinction now between upper and lower case indices. The initial tod is
unstressed and at uniform temperature 00 and we suppose that T* in (10.6) denotes tempera­
ture differences from eo. With the usual linearization, the equations of motion in Section 13
reduce, for a straight rod, to

on· alu-80 +4 = ), at l ' , (14.3)

a
21t12 = 21t21 "" ),(Q12 +q21)+ af/P12 +P21),

where), is now the initial density and

(14.5)

m3 = P12-P21' (14.6)

t The work of Green, Laws and Naghdi was based on an exact theory of rods obtained by separate postulates
and not deduced from three dimensional equations.
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The constitutive equations are

A. E. GREEN and P. M. NAGHDI

iJA
113 = 21

iJ
-,

Y33

(14.7)

s = _ iJA SPI'''PN = iJA
iJ Tto ' iJ 'T' '

IPI'''PN

where S, SP,'''PN denote entropy differences from initial values and A is a quadratic form in
the variables

Yij, 'K<Ij' To, TfJ, ·· h · (14.8)

Also for a rod which is symmetric for reflections along the directions A I , A2 ,

a1bpi
qPi = lpi-r:tp8t2 ({3 not summed), (14.9)

where lpi are components of assigned director force and rxfJ are inertia coefficients. The
residual energy equations reduce to

(14.10)

Previously, Green, Laws and Naghdi [10] considered a quadratic form for the variables
(l4.8).with 1JJ""PN = 0 (N ~ 1), which was invariant under the transformations

(14.11)

assuming To is unaltered by such transformations. Here we deal with non zero values of
'JP""PN and assume that 1JJ''''PN are unaltered when 0 - -0 and that

(14.12)

when a 1 - -aI' A I -4 -AI and an odd number of the indices take the value 1. Under the
same transformation of vectors aI' A I

(14.13)

where an even number of indices take the value 1. Similarly, when 3 1 - -32 , A1 -4 - Az ,
we have

(14.14)

where an odd number of indices take the value 2 and

(14.15)

where an even number of indices take the value 2.
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In the rest of this section we restrict attention to the case in which

Tp""PN = 0 (N ~ 2), (14.16)

so that To, T1 , T2 are the only surviving temperatures. With invariance under the trans­
formations (14.11) and the subsequent conditions, the quadratic for A assumes the form

lA.A = k1yil +k2Y~2+k3Y~3+!k4(Y12+Y21l+ksY~3

+k6YI3 +k7 yuY22 + kaYu Y33 +k9Y22Y33

+k10l<rl +k11I<~2+k12 l<i2 +k13l<il +k 141<121<21

+ klSI<J3 +k161<I3 +k171<tt1<22 + 2kl8 ToY 11 + 2k19TOY22

+2k10TOY33 +kzl T~ + 2kz2 TIl<l 3 + 2k23 121<23 + k24 TI +k25 Ti. (14.17)

From (14.17) and the other equations of this section we can obtain expressions for
stresses and entropy. The equations separate into four distinct groups, two concerned with
flexure, one with torsion and one with logitudinal extension. The two sets of equations for
flexure, including the equations of motion and energy equationst, are

ani aZUl 8m2 82b13
8O+ A11 = A otZ 'M+nl-AI13+A<1t 8tZ = 0,

ob13
n l = k6 (b 13 +b31 ), m2 = -k l6 oe -kzzTl ,

(14.18)

(14.19)

(14.20)

The equations for torsional motion of the rod are

om3 (a2
b12 8

2
b21 )ae +,i,(/12 -/21 ) =,i, <11---ai2-r.x2---ai2 '

o (8
Z
b12 8

2
bzl )

2nl2 = OI/P12 +P21)+A.(l12 +121 )-A. <1l---atr+<1Z---ai2 '

I iJb 12 1 8hZ1
m3 = (k 12 -Zk14)a-e-(k13 -Zk14)a-e'

nl2 = k4(b t2 +b21 ),

(k 1 iJb 12 1 3hZl
Po +P2l= 12 +zkt4) 3e +(k13 +zkl 4)a-e'

t The energy equations in (14.10) for II ~ 2 are, in fact, only satisfied by an appropriate choice for r"' ""·(11 ~ 2).
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and the equations for extensional motion of the rod are

on3 02 U3
-he +43 = ). atr,

0Pt1 ( al
bl1 )

nll = - ao +). 111 -(Xl iit""2 '

0P22 ( iJ2 b22 )n22 = 80+). 122-(X2~ ,

n3 = 2ks bll +2k9b22+4k3b33+2k20To,

nll = 4k 1bll +2k7b22+2ksb33+2k1STo,

n22 = 2k7bll +4k2b22 +2kg b33 +2k19To,

ob ll 1 ilb22
Pll = k lO - iJ(J +2k17M'

iJb 22 1 ob ll
P22 = k l1 ---aif+],k1780,

(14.21)

. oh
Ar-).8oS- iJO = O.

Equations (14.20) and (14.21) have been given previously by Green, Laws and Naghdi and
were derived from an exact system of equations which were not deduced from three dimen­
sional equations by approximation. These authors also gave the system ofequations (14.18)
and (14.19) when T1 = T2 O. To complete the theory characterized by equations (14.18),
(14.19) and (14.21) we require constitutive equations for R 1

, R2
, h, hI, hl

• These can be
obtained by separate postulates but here we derive them from the three dimensional form
of the heat conduction vector for a rod which is transversely isotropic with respect to its
length. In view of the special system of vectors Ai chosen here for the straight rod in its
initial state we can regard e1 , (J2, eas a system of rectangular Cartesian coordinates so that

aT* *3 ,oT* ( 2q*1Z = -I( 00'" ' q = -I( 7iif 14. 2)

where 1(, 1(' are constants. We assume that the temperature of the medium surrounding the
rod is T+, a function of e, and we adopt the surface condition

(14.23)

where H is a constant. In view of (14.16), we recall that

T* = To+fJlTl +0212

approximately, where To, T1 , T2 are functions of (J and t.
From (10.15) and (14.23), we have

(14.24)
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where, since e1 , e2 are rectangular Cartesian coordinates,

do = u1 de2
- u2 del,

do being a line element along the curve e = constant, f(e l
, (

2
) = O. Recalling that the rod

has symmetries about the directions e1
, e2 it follows that

(14.25)

where

(14.26)

and 1is the length of the boundary curve of a normal section of the rod. Similarly, from
(10.29), (10.31), (14.22) and (14.23) we see that

ARa+Af = Ara-K!lJ;.+Hl~Ta (O(notsummed), (14.27)

where

!l = ff del de2, fa = f(8")2 do.

Also, from (10.20), (10.27), (14.22) and (14.24) since here h* = q*3,

(14.28)

where

h = _ 'A oTo
K L.1 oe ' ha = '1 oJ;. ( t m d)- K aaae 0( no su me , (14.29)

Iaa = ff eafJ' del de2
(0( not summed). (14.30)

This completes the specification of all quantitie~ appearing in the energy equations in
(14.18), (14.19) and (14.21)

By comparing some exact solutions from the three dimensional linear elasticity with
corresponding solutions predicted by the approximate theory, we can identify some of the
elastic coefficients which occur in the approximate value of A in (14.17). In this manner,
Green, Laws and Naghdi [10] have previously given values for the coefficients kl5 and kl6 .
We defer to a future occasion the problem of finding values for the remaining coefficients in
(14.17).

In view of the approximation made in the value of A, we expect that some of the identi­
ties in section 11 (mentioned in the paragraph aftel (2.10») wili not now be satisfied. In
particular, the identity (11.19)4 yields

(14.31)

Also, for the linear elastic rod, (11.32) gives

(14.32)
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approximately. Hence

or

A. E. GREEN and P. M. NAGHDI

(14.33)

pll = p22 = 0, p12+ p 21 = O. (14.34)

The first conditions in (14.34) provide the restrictions k lO = kll = k l7 = Oon the equations
(14.21) of the extensional theory while (14.34h provide restrictions on the torsional motion
governed by equations (14.20). The latter condition appears to lead to a theory for the
torsion of a bar for which k 12 = k 13 , (Xl = (X2 and b 12 +b21 = O. We note here that if we
include (14.34) as part of the approximation procedure, the resulting approximate theory is
more restrictive than the corresponding results for a Cosserat curve, obtained by Green and
Laws [4J from separate postulates. However, it does not appear essential to use (14.34).
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A6cTpaKT-PaCCMaTpHBaeTCli nop,p06Hali pa3pa60TKa HenHHeHHbIx TepMOp,HHaMH'IecKHx TeopHH CTep­
lKHeil: H o60nO'leK, Hcnonb3Yll B Ka'lecTBe HcxOp,HOil: TO'lKH, TpexMepHylO TeopHIO KnaCCH'IecKoil: MexaHHKH
cnnoIIIHoil: cpep,bI. qacTb pa60TbI p,OnOnHJleT H paCIIIHPaeT npeAbIAYW:YIO pa60TY no 3TOMY BOnpocy
rpHHa, JllIBCa H HarxAK (1). H3MeHlleTclI, TaIOKe, MeTOp, annpoKCHMamm, HCnOnb3yeMbIil: B (1), B BHAY
Toro, 'ITO OH OKa3bIBaeTCli p,OCTaTO'IHbIM TonbKO B HeKoTopoil: CTeneHH AnJl pemeHHJl3ap,a'lH. 06paw:aeTCli
CneIJ;HMbHoe BHHMaHHe Ha HeH30TepMH'IecKHe nHHeil:Hble TeopHH ynpyrHx 060nO'IeK H rrpJlMbIX yrrpyrnx
CTepll<Heil:, TIOny'leHHbIe B npeP,bIAYW:HX ypaBHeHHlIX.


